java浅拷贝BeanUtils.copyProperties引发的RPC异常 | 京东物流技术团队

news2024/11/15 11:12:17

背景

近期参与了一个攻坚项目,前期因为其他流程原因,测试时间已经耽搁了好几天了,本以为已经解决了卡点,后续流程应该顺顺利利的,没想到 人在地铁上,bug从咚咚来~

没有任何修改的服务接口,抛出异常:

java.lang.ClassCastException: java.util.HashMap cannot be cast to cn.xxx.xxx.xxx.xxx.BatchInfo

排查过程

1、作为资深写bug的老司机,第一感觉是传参的报文格式有问题了,可以通过模拟报文排查。于是乎,在群里圈了服务提供方同学B看下,BG快速的用测试工具+本地debug的方式,验证了下报文格式,发现居然都调用成功了。。。

2、同步服务调用同学L,重点关注:1)、调用方的序列化方式;2)、最近代码改动逻辑是否有问题。L同学确认自己逻辑没有问题后,同步B同学和S同学,看内部是否有什么处理逻辑。。。

3、第二天早上一来,快速写了单测,确认服务端收到的报文格式,的确没有问题。于是乎,开始扒代码。。。发现可疑的代码:

BeanUtils.copyProperties(item,cargoInfo)

private List<CargoInfo> convertToCargoInfo(OutboundEventCallbackRequest outboundEventCallbackRequest) {
        return outboundEventCallbackRequest.getCargos().stream().map(item -> {
            CargoInfo cargoInfo = new CargoInfo();
            BeanUtils.copyProperties(item, cargoInfo);
            return cargoInfo;
    }).collect(Collectors.toList());
}

PS:客户端&服务端类关系

因为BeanUtils.copyProperties属于浅拷贝,而浅拷贝只是调用子对象的set方法,并没有将所有属性拷贝(引用的一个内存地址)。所以将在进行调用时,JSF会因为反序列化时找不到对应的类,就会将其转换为Map。

直观图如下:

以上,初步定位原因,解决方式也就清晰了。

解决方案

去掉BeanUtils.copyProperties,进行手动赋值。最终解决了这个问题。

后续反思

1、想起王东岳老师的那句话,越原始的越稳定~

2、如果这种转换比较多,建议使用MapStruct

3、谨慎使用BeanUtils.copyProperties,请看:

作者:京东物流 吴义

来源:京东云开发者社区 自猿其说 Tech 转载请注明来源

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1339600.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

IT安全:实时网络安全监控

了解庞大而复杂的网络环境并非易事&#xff0c;它需要持续观察、深入分析&#xff0c;并对任何违规行为做出快速反应。这就是为什么实时网络安全监控工具是任何组织 IT 安全战略的一个重要方面。 网络攻击和合规性法规是 IT 安全的两个主要驱动因素。同时&#xff0c;数据泄露…

Spring Cloud Gateway 常见过滤器的基本使用

目录 1. 过滤器的作用 2. Spring Cloud Gateway 过滤器的类型 2.1 内置过滤器 2.1.1 AddResponseHeader 2.1.2 AddRequestHeader 2.1.3 PrefixPath 2.1.4 RequestRateLimiter 2.1.5 Retry 2.2 自定义过滤器 1. 过滤器的作用 过滤器通常用于拦截、处理或修改数据流和事…

Springboot+vue的医疗报销系统(有报告),Javaee项目,springboot vue前后端分离项目

演示视频&#xff1a; Springbootvue的医疗报销系统&#xff08;有报告&#xff09;&#xff0c;Javaee项目&#xff0c;springboot vue前后端分离项目 项目介绍&#xff1a; 本文设计了一个基于Springbootvue的前后端分离的医疗报销系统&#xff0c;采用M&#xff08;model&a…

百度沧海文件存储CFS推出新一代Namespace架构

随着移动互联网、物联网、AI 计算等技术和市场的迅速发展&#xff0c;数据规模指数级膨胀&#xff0c;对于分布式文件系统作为大规模数据场景的存储底座提出了更高的要求。已有分布式文件系统解决方案存在着短板&#xff0c;只能适应有限的场景&#xff1a; >> 新型分布式…

【产品经理】axure中继器的使用——表格增删改查分页实现

笔记为个人总结笔记&#xff0c;若有错误欢迎指出哟~ axure中继器的使用——表格增删改查分页实现 中继器介绍总体视图视频预览功能1.表头设计2.中继器3.添加功能实现4.删除功能实现5.修改功能实现6.查询功能实现7.批量删除 中继器介绍 在 Axure RP9 中&#xff0c;中继器&…

IntelliJ IDEA Apache Dubbo,IDEA 官方插件正式发布!

作者&#xff1a;刘军 最受欢迎的 Java 集成开发环境 IntelliJ IDEA 与开源微服务框架 Apache Dubbo 社区强强合作&#xff0c;给广大微服务开发者带来了福音。与 IntelliJ IDEA 2023.2 版本一起&#xff0c;Jetbrains 官方发布了一款全新插件 - Apache Dubbo in Spring Frame…

matlab列优先与高维矩阵重构

由于matlab在列化a(:)以及reshape(a)等操作中是列优先的&#xff0c;所以要重构出新的高维度矩阵&#xff0c;通常要把reshape和permute结合起来使用。 先到 http://caffe.berkeleyvision.org/ 下载 训练好的model bvlc_reference_caffenet.caffemodel; 更多caffe使用也请参看…

C#编程艺术:Fizzler库助您高效爬取www.twitter.com音频

数据是当今数字时代的核心资源&#xff0c;但是从互联网上抓取数据并不容易。本文将教您如何利用C#编程艺术和Fizzler库高效爬取Twitter上的音频数据&#xff0c;让您轻松获取所需信息。 Twitter简介 Twitter是全球最大的社交媒体平台之一&#xff0c;包含丰富的音频资源。用…

机器学习系列--R语言随机森林进行生存分析(1)

随机森林&#xff08;Breiman 2001a&#xff09;&#xff08;RF&#xff09;是一种非参数统计方法&#xff0c;需要没有关于响应的协变关系的分布假设。RF是一种强大的、非线性的技术&#xff0c;通过拟合一组树来稳定预测精度模型估计。随机生存森林&#xff08;RSF&#xff0…

【Pytorch】学习记录分享8——PyTorch自然语言处理基础-词向量模型Word2Vec

【Pytorch】学习记录分享7——PyTorch自然语言处理基础-词向量模型Word2Vec 1. 词向量模型Word2Vec)1. 如何度量这个单词的&#xff1f;2.词向量是什么样子&#xff1f;3.词向量对应的热力图&#xff1a;4.词向量模型的输入与输出![在这里插入图片描述](https://img-blog.csdni…

solidity案例详解(七)复杂众筹合约

自己原创智能合约&#xff0c;有作业需求可加下面的图片中的裙 1、在 Remix 中&#xff0c;以 Account1 完成“众筹项目”合约的编译和部署。&#xff08;显示合约、函数、状态变量、结构体、事件的命名&#xff09; 2、在 Remix 中&#xff0c;以 Account2 完成“参与众筹”合…

【架构】企业信息安全体系架构详解

企业信息安全体系架构来说,是包含技术、运维、管理3个层面。本文说的安全架构,主要集中讨论偏研发技术层面的安全架构。 安全性是软件研发技术体系,系统架构设计阶段的一个关键DFX能力,与可靠性、可服务性、性能等架构属性并列。由于安全性设计自身的特点,涉及到系统架构…

【ARMv8M Cortex-M33 系列 2.1 -- Cortex-M33 使用 .hex 文件介绍】

文章目录 HEX 文件介绍英特尔十六进制文件格式记录类型hex 示例Cortex-M 系列hex 文件的使用 HEX 文件介绍 .hex 文件通常用于微控制器编程&#xff0c;包括 ARM Cortex-M 系列微控制器。这种文件格式是一种文本记录&#xff0c;用于在编程时传递二进制信息。.hex 文件格式最常…

Python+OpenCV 零基础学习笔记(1):anaconda+vscode+jupyter环境配置

文章目录 前言相关链接环境配置&#xff1a;AnacondaPython配置OpenCVOpencv-contrib:Opencv扩展 Notebook:python代码笔记vscode配置配置AnacondaJupyter文件导出 前言 作为一个C# 上位机&#xff0c;我认为上位机的终点就是机器视觉运动控制。最近学了会Halcon发现机器视觉还…

『Linux升级路』冯诺依曼体系结构与操作系统

&#x1f525;博客主页&#xff1a;小王又困了 &#x1f4da;系列专栏&#xff1a;Linux &#x1f31f;人之为学&#xff0c;不日近则日退 ❤️感谢大家点赞&#x1f44d;收藏⭐评论✍️ 目录 一、冯诺依曼体系结构 &#x1f4d2;1.1为什么要有体系结构 &#x1f4d2;1.2…

23款奔驰GLC260L升级原厂540全景影像 高清环绕的视野

嗨 今天给大家介绍一台奔驰GLC260L升级原厂360全景影像 新款GLC升级原厂360全景影像 也只需要安装前面 左右三个摄像头 后面的那个还是正常用的&#xff0c;不过不一样的是 升级完成之后会有多了个功能 那就是新款透明底盘&#xff0c;星骏汇小许 Xjh15863 左右两边只需要更换…

Next Station of Flink CDC

摘要&#xff1a;本文整理自阿里云智能 Flink SQL、Flink CDC 负责人伍翀&#xff08;花名&#xff1a;云邪&#xff09;&#xff0c;在 Flink Forward Asia 2023 主会场的分享。Flink CDC 是一款基于 Flink 打造一系列数据库的连接器。本次分享主要介绍 Flink CDC 开源社区在过…

【TensorFlow 精简版】TensorFlow Lite

目录 一 TensorFlow Lite简介 二 开发 三 开始使用 一 TensorFlow Lite简介 TensorFlow Lite 是一组工具&#xff0c;可帮助开发者在移动设备、嵌入式设备和 loT 设备上运行模型&#xff0c;以便实现设备端机器学习。 针对设备端的机器学习进行的优化&#xff1a; ① 延时&…

NLP 自然语言处理实战

自然语言处理 ( Natural Language Processing, NLP) 是计算机科学领域与人工智能领域中的一个重要方向。它研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法&#xff0c;用于分析理解机器与人之间的交互&#xff0c;常用的领域有&#xff1a;实体识别、文本纠错…

STM32 IIC开发学习

1IIC总线时序图 ① 起始信号 当 SCL 为高电平期间&#xff0c;SDA 由高到低的跳变。起始信号是一种电平跳变时序信号&#xff0c;而不是 一个电平信号。该信号由主机发出&#xff0c;在起始信号产生后&#xff0c;总线就会处于被占用状态&#xff0c;准备数据 传输。 ② 停止信…