STM32 IIC开发学习

news2025/1/21 12:51:30

1IIC总线时序图

在这里插入图片描述
① 起始信号
当 SCL 为高电平期间,SDA 由高到低的跳变。起始信号是一种电平跳变时序信号,而不是
一个电平信号。该信号由主机发出,在起始信号产生后,总线就会处于被占用状态,准备数据
传输。
② 停止信号
当 SCL 为高电平期间,SDA 由低到高的跳变。停止信号也是一种电平跳变时序信号,而不
是一个电平信号。该信号由主机发出,在停止信号发出后,总线就会处于空闲状态。
③ 应答信号
发送器每发送一个字节,就在时钟脉冲 9 期间释放数据线,由接收器反馈一个应答信号。
应答信号为低电平时,规定为有效应答位(ACK 简称应答位),表示接收器已经成功地接收了
该字节。应答信号为高电平时,规定为非应答位(NACK),一般表示接收器接收该字节没有成
功。
观察上图标号③就可以发现,有效应答的要求是从机在第 9 个时钟脉冲之前的低电平期间
将 SDA 线拉低,并且确保在该时钟的高电平期间为稳定的低电平。如果接收器是主机,则在它
收到最后一个字节后,发送一个 NACK 信号,以通知被控发送器结束数据发送,并释放 SDA
线,以便主机接收器发送一个停止信号。
④ 数据有效性
IIC 总线进行数据传送时,时钟信号为高电平期间,数据线上的数据必须保持稳定,只有在
时钟线上的信号为低电平期间,数据线上的高电平或低电平状态才允许变化。数据在 SCL 的上
升沿到来之前就需准备好。并在下降沿到来之前必须稳定。
⑤ 数据传输
在 IIC 总线上传送的每一位数据都有一个时钟脉冲相对应(或同步控制),即在 SCL 串行
时钟的配合下,在 SDA 上逐位地串行传送每一位数据。数据位的传输是边沿触发。
⑥ 空闲状态
IIC 总线的 SDA 和 SCL 两条信号线同时处于高电平时,规定为总线的空闲状态。此时各个
器件的输出级场效应管均处在截止状态,即释放总线,由两条信号线各自的上拉电阻把电平拉
高。

IIC写操作

下面介绍一下 IIC 的基本的读写通讯过程,包括主机写数据到从机即写
操作,主机到从机读取数据即读操作。
在这里插入图片描述
主机首先在 IIC 总线上发送起始信号,那么这时总线上的从机都会等待接收由主机发出的
数据。主机接着发送从机地址+0(写操作)组成的 8bit 数据,所有从机接收到该 8bit 数据后,自
行检验是否是自己的设备的地址,假如是自己的设备地址,那么从机就会发出应答信号。主机
在总线上接收到有应答信号后,才能继续向从机发送数据。注意:IIC 总线上传送的数据信号是广义的,既包括地址信号,又包括真正的数据信号。

IIC读操作

在这里插入图片描述

主机向从机读取数据的操作,一开始的操作与写操作有点相似,观察两个图也可以发现,
都是由主机发出起始信号,接着发送从机地址+1(读操作)组成的 8bit 数据,从机接收到数据验
证是否是自身的地址。 那么在验证是自己的设备地址后,从机就会发出应答信号,并向主机返
回 8bit 数据,发送完之后从机就会等待主机的应答信号。假如主机一直返回应答信号,那么从
机可以一直发送数据,也就是图中的(n byte + 应答信号)情况,直到主机发出非应答信号,从
机才会停止发送数据。

STM32 完成IIC的各个阶段的c代码

myiic.h

#ifndef _MYIIC_H
#define _MYIIC_H

#include "./SYSTEM/sys/sys.h"
#include "./SYSTEM/delay/delay.h"

/****************************************************************************************************/
/* 引脚 定义 */

#define IIC_SCL_GPIO_PORT               GPIOB
#define IIC_SCL_GPIO_PIN                GPIO_PIN_10
#define IIC_SCL_GPIO_CLK_ENABLE()       do{ __HAL_RCC_GPIOB_CLK_ENABLE(); }while(0)   /* PB口时钟使能 */

#define IIC_SDA_GPIO_PORT               GPIOB
#define IIC_SDA_GPIO_PIN                GPIO_PIN_3
#define IIC_SDA_GPIO_CLK_ENABLE()       do{ __HAL_RCC_GPIOB_CLK_ENABLE(); }while(0)   /* PB口时钟使能 */

/****************************************************************************************************/

/*IO 高低电平*/


#define IIC_SCL(x) do{x ? \
                     HAL_GPIO_WritePin(IIC_SCL_GPIO_PORT, IIC_SCL_GPIO_PIN, GPIO_PIN_SET) : \
                     HAL_GPIO_WritePin(IIC_SCL_GPIO_PORT, IIC_SCL_GPIO_PIN, GPIO_PIN_RESET); \
                     }while(0)  /* SCL */

#define IIC_SDA(x) do{x ? \
                     HAL_GPIO_WritePin(IIC_SDA_GPIO_PORT, IIC_SDA_GPIO_PIN, GPIO_PIN_SET) : \
                     HAL_GPIO_WritePin(IIC_SDA_GPIO_PORT, IIC_SDA_GPIO_PIN, GPIO_PIN_RESET); \
                     }while(0)  /* SDA */                     

#define IIC_READ_SDA  HAL_GPIO_ReadPin(IIC_SDA_GPIO_PORT,IIC_SDA_GPIO_PIN) /* 读取SDA */
                     
                     
void iic_start(void);
void iic_stop(void);
static void iic_delay(void);
uint8_t iic_wait_ack(void);
void iic_ack(void);
void iic_nack(void);
void iic_send_byte(uint8_t data);
uint8_t iic_read_byte(uint8_t ack);

#endif

myiic.c

#include "myiic.h"

/**
 * @brief       初始化IIC 初始化GPIO
 * @param       无
 * @retval      无
 */
 
 void iic_init(void)
 {
    GPIO_InitTypeDef gpio_init_struct;

    IIC_SCL_GPIO_CLK_ENABLE();                          /* SCL引脚时钟使能 */
    IIC_SDA_GPIO_CLK_ENABLE();                          /* SDA引脚时钟使能 */

    gpio_init_struct.Pin = IIC_SCL_GPIO_PIN;
    gpio_init_struct.Mode = GPIO_MODE_OUTPUT_PP;        /* 推挽输出 */
    gpio_init_struct.Pull = GPIO_PULLUP;                /* 上拉 */
    gpio_init_struct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; /* 快速 */
    HAL_GPIO_Init(IIC_SCL_GPIO_PORT, &gpio_init_struct);/* SCL */

    gpio_init_struct.Pin = IIC_SDA_GPIO_PIN;
    gpio_init_struct.Mode = GPIO_MODE_OUTPUT_OD;        /* 推挽输出 */
    HAL_GPIO_Init(IIC_SDA_GPIO_PORT, &gpio_init_struct);/* SDA */
    /* SDA引脚模式设置,开漏输出,上拉, 这样就不用再设置IO方向了, 开漏输出的时候(=1), 也可以读取外部信号的高低电平 */

    iic_stop(); 
 }
 
 
 /**
 * @brief       IIC延时函数,用于控制IIC读写速度
 * @param       无
 * @retval      无
 */
 
static void iic_delay(void)
{
    delay_us(2);
}    

/**
 * @brief       产生IIC起始信号
 * @param       无
 * @retval      无
 */

void iic_start(void)
{
    IIC_SCL(1);
    IIC_SDA(1);
    iic_delay();
    IIC_SDA(0);     /* START信号: 当SCL为高时, SDA从高变成低, 表示起始信号 */
    iic_delay();
    IIC_SCL(0);     /* 钳住I2C总线,准备发送或接收数据 */
    iic_delay();
}

/**
 * @brief       产生IIC停止信号
 * @param       无
 * @retval      无
 */
void iic_stop(void)
{
    IIC_SDA(0);
    iic_delay();
    IIC_SCL(1); /* STOP信号: 当SCL为高时, SDA从低变成高, 表示停止信号 */
    iic_delay();
    IIC_SDA(1);
    iic_delay();
}

/**
 * @brief       等待应答信号到来
 * @param       无
 * @retval      1,接收应答失败
 *              0,接收应答成功
 */

uint8_t iic_wait_ack(void)
{
    uint8_t waittime =0;
    uint8_t rack =0;
    
    IIC_SDA(1);     /* 主机释放SDA线(此时外部器件可以拉低SDA线) */
    iic_delay();
    IIC_SCL(1);     /* SCL=1, 此时从机可以返回ACK */
    iic_delay();
    
    while(IIC_READ_SDA) /* 等待应答 */
    {
        waittime++;
        if(waittime>250)
        {
          iic_stop();
          rack=1;
          break;
        }
    }
    IIC_SCL(0);     /* SCL=0, 结束ACK检查 */
    iic_delay();
    return rack;
}

/**
 * @brief       产生ACK应答
 * @param       无
 * @retval      无
 */


void iic_ack(void)
{
   /* SCL 0 -> 1  时 SDA = 0,表示应答 */
   IIC_SDA(0);
   iic_delay();
   IIC_SCL(1);
   iic_delay();
   IIC_SCL(0);
   iic_delay();
   IIC_SDA(1);     /* 主机释放SDA线 */
   iic_delay();
}


/**
 * @brief       不产生ACK应答
 * @param       无
 * @retval      无
 */

void iic_nack(void)
{
   /* SCL 0 -> 1  时 SDA = 1,表示非应答 */
   IIC_SDA(1);
   iic_delay();
   IIC_SCL(1);
   iic_delay();
   IIC_SCL(0);
   iic_delay();

}

/**
 * @brief       IIC发送一个字节
 * @param       data: 要发送的数据
 * @retval      无
 */

void iic_send_byte(uint8_t data)
{
    uint8_t i;
    for(i=0;i<8;i++)
    {
      IIC_SDA((data&0x80)>>7);  /* 高位先发送 */
      iic_delay();
      IIC_SCL(1);
      iic_delay();
      IIC_SCL(0);
      data<<=1; /* 左移1位,用于下一次发送 */
    }
    IIC_SDA(1);/* 发送完成, 主机释放SDA线 */

}

/**
 * @brief       IIC读取一个字节
 * @param       ack:  ack=1时,发送ack; ack=0时,发送nack
 * @retval      接收到的数据
 */

uint8_t iic_read_byte(uint8_t ack)
{
    uint8_t i;
    uint8_t rec=0;
    for(i=0;i<8;i++) /* 接收1个字节数据 */
    {
        rec<<=1; /* 高位先输出,所以先收到的数据位要左移 */
        IIC_SCL(1);
        iic_delay();
        
        if(IIC_READ_SDA)
        {
          rec++;
        }
        IIC_SCL(0);
        iic_delay();
    }
    if(!ack)
    {
      iic_nack();
    }
    else
    {
      iic_ack();
    }
    
    return rec;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1339569.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

深度!把握这三点,即可选出适合能源行业的数据摆渡解决方案

在能源行业中&#xff0c;网络隔离通常采用物理隔离方式&#xff0c;即将能源行业网络与外部网络进行物理隔离&#xff0c;避免外部网络对能源行业网络的攻击和入侵。 同时&#xff0c;网络隔离也可以采用逻辑隔离方式&#xff0c;即在能源行业网络和外部网络之间设置防火墙、入…

【ES6】Class继承-super关键字

目录 一、前言二、ES6与ES5继承机制区别三、super作为函数1、构造函数this1&#xff09;、首先要明确this指向①、普通函数②、箭头函数③、注意事项 2&#xff09;、其次要明确new操作符做了哪些事情 2、super()的用法及注意点1&#xff09;、用法2&#xff09;、注意点 四、s…

算法的四大思想之一:动态规划

一、动态规划 什么是动态规划&#xff1f; 动态规划&#xff08;Dynamic Programming&#xff0c;简称DP&#xff09;是一种解决问题的算法思想&#xff0c;它将一个大问题拆分成多个相互重叠的子问题&#xff0c;并且通过解决这些子问题来求解原始问题 核心思想 拆分大问题…

vue3+luckyexcel+php在线编辑excel文件

开发过程中&#xff0c;需要开发一个在线编辑excel文档的功能&#xff0c;找到了这个合适的组件 Luckysheet &#xff0c;一款纯前端类似excel的在线表格&#xff0c;功能强大、配置简单、完全开源。 可以导入文档&#xff0c;预览、编辑、保存、导出等功能&#xff0c;可以满…

RabbitMQ 和 Kafka 对比

本文对RabbitMQ 和 Kafka 进行下比较 文章目录 前言RabbitMQ架构队列消费队列生产 Kafka本文小结 前言 开源社区有好多优秀的队列中间件&#xff0c;比如RabbitMQ和Kafka&#xff0c;每个队列都貌似有其特性&#xff0c;在进行工程选择时&#xff0c;往往眼花缭乱&#xff0c;不…

【MATLAB】PSO粒子群优化BiLSTM(PSO_BiLSTM)的时间序列预测

有意向获取代码&#xff0c;请转文末观看代码获取方式~也可转原文链接获取~ 1 基本定义 基于PSO粒子群优化的BiLSTM的时间序列预测算法的基本原理如下&#xff1a; 「双向长短时记忆&#xff08;BiLSTM&#xff09;模型」&#xff1a;这是一种深度学习模型&#xff0c;特别适用…

从现场到远程:PLC网关设备售后服务升级换代

问题 作为自动化企业&#xff0c;以前在调试PLC程序时&#xff0c;不得不在现场调试&#xff0c;遇到软件维护和售后服务时&#xff0c;甚至给公司带来一定的经营成本和维护成本的压力&#xff0c;PLC网关正好解决了这一难题。 PLC工业网关是可以让工业PLC设备轻松接入互联网…

GPT分区格式

GPT分区格式 [rootlocalhost ~]# gdisk /dev/sdb -bash: gdisk: 未找到命令 [rootlocalhost ~]# yum -y install gdisk- gdisk命令用于查看磁盘使用情况和磁盘分区&#xff08;GPT分区格式&#xff09; - 命令格式&#xff1a;gdisk [选项...] [设备路径] - 常用选项&…

linux 网络工具(二)

linux 网络工具 1. ip命令簇4.1 address4.2 link4.3 route4.4 rule 2. 其他常用命令2.1 ifup/ifdown2.2 配置主机名2.3 设置DNS服务器指向2.4 配置域名解析2.5 ss2.6 路由相关配置文件2.7 查看机器可用端口2.8 traceroute2.9 dhclient 1. ip命令簇 Linux的ip命令和ifconfig类似…

案例189:基于微信小程序的高校教务管理系统设计与实现

文末获取源码 开发语言&#xff1a;Java 框架&#xff1a;springboot JDK版本&#xff1a;JDK1.8 数据库&#xff1a;mysql 5.7 开发软件&#xff1a;eclipse/myeclipse/idea Maven包&#xff1a;Maven3.5.4 小程序框架&#xff1a;uniapp 小程序开发软件&#xff1a;HBuilder …

Three.js基础入门介绍——Three.js学习三【借助控制器操作相机】

在Three.js基础入门介绍——Three.js学习二【极简入门】中介绍了如何搭建Three.js开发环境并实现一个包含旋转立方体的场景示例&#xff0c;以此为前提&#xff0c;本篇将引进一个控制器的概念并使用”轨道控制器”&#xff08;OrbitControls&#xff09;来达到从不同方向展示场…

使用 SSH 方式实现 Git 远程连接GitHub

git是目前世界上最先进的分布式版本控制系统&#xff0c;相比于SVN&#xff0c;分布式版本系统的最大好处之一是在本地工作完全不需要考虑远程库的存在&#xff0c;也就是有没有联网都可以正常工作&#xff01;当有网络的时候&#xff0c;再把本地提交推送一下就完成了同步&…

【信息安全原理】——入侵检测与网络欺骗(学习笔记)

&#x1f4d6; 前言&#xff1a;在网络安全防护领域&#xff0c;防火墙是保护网络安全的一种最常用的设备。网络管理员希望通过在网络边界合理使用防火墙&#xff0c;屏蔽源于外网的各类网络攻击。但是&#xff0c;防火墙由于自身的种种限制&#xff0c;并不能阻止所有攻击行为…

open_vins 安装(ubuntu18.04 opencv3.2.0)

openvins官网 Getting Started Installation Guide (ROS1 and ROS2) | OpenVINS Ubuntu 18.04 ROS 1 Melodic (uses OpenCV 3.2) 这里他指的是ros1 melodic&#xff0c;他们用的opencv3.2测试过。 open_vins 官方给的组合Ubuntu 18.04 ROS 1 Melodic (uses OpenCV 3.2) Ub…

k8s二进制部署2

部署 Worker Node 组件 //在所有 node 节点上操作 #创建kubernetes工作目录 mkdir -p /opt/kubernetes/{bin,cfg,ssl,logs} #上传 node.zip 到 /opt 目录中&#xff0c;解压 node.zip 压缩包&#xff0c;获得kubelet.sh、proxy.sh cd /opt/ unzip node.zip chmod x kubelet.…

视觉学习笔记13——既是模型,又是模型中转站的onnx

系列文章目录 入门级深度学习环境搭建 文章目录 系列文章目录前言一、ONNX是什么&#xff1f;二、环境安装1、在 Anaconda 环境中安装 onnx2、在 Anaconda 环境中卸载 onnx3、anaconda 安装onnxruntime 未完待续。。。 前言 假设一个场景&#xff1a;现在某组织因为主要开发用…

Ubuntu中fdisk磁盘分区并挂载、扩容逻辑卷

Ubuntu中fdisk磁盘分区并挂载、扩容逻辑卷 一&#xff1a;fdisk磁盘分区并挂载1.查看磁盘分区信息2.分区3.强制系统重新读取分区(避免重启系统)4.格式化分区5.创建挂载目录6.设置开机自动挂载&#xff1a;7.验证并自动挂载(执行了该命令不需要重启系统)8.查看挂载007.异常情况处…

Feature Prediction Diffusion Model for Video Anomaly Detection 论文阅读

Feature Prediction Diffusion Model for Video Anomaly Detection论文阅读 Abstract1. Introduction2. Related work3. Method3.1. Problem Formulation3.2. Feature prediction diffusion module 3.3. Feature refinement diffusion module4. Experiments and discussions4.1…

Flink1.17实战教程(第六篇:容错机制)

系列文章目录 Flink1.17实战教程&#xff08;第一篇&#xff1a;概念、部署、架构&#xff09; Flink1.17实战教程&#xff08;第二篇&#xff1a;DataStream API&#xff09; Flink1.17实战教程&#xff08;第三篇&#xff1a;时间和窗口&#xff09; Flink1.17实战教程&…

如何在无公网IP环境使用Windows远程桌面Ubuntu

文章目录 一、 同个局域网内远程桌面Ubuntu二、使用Windows远程桌面连接三、公网环境系统远程桌面Ubuntu1. 注册cpolar账号并安装2. 创建隧道&#xff0c;映射3389端口3. Windows远程桌面Ubuntu 四、 配置固定公网地址远程Ubuntu1. 保留固定TCP地址2. 配置固定的TCP地址3. 使用…