百度沧海文件存储CFS推出新一代Namespace架构

news2024/11/15 11:16:25

每秒创建百万文件,百度沧海·文件存储CFS推出新一代Namespace架构

随着移动互联网、物联网、AI 计算等技术和市场的迅速发展,数据规模指数级膨胀,对于分布式文件系统作为大规模数据场景的存储底座提出了更高的要求。已有分布式文件系统解决方案存在着短板,只能适应有限的场景:

>> 新型分布式文件系统无法承接传统领域内的所有 WorkLoad:通过只支持部分 POSIX 接口来简化系统设计,无法完全兼容 POSIX 协议。

>> 传统分布式文件系统无法支持海量小文件场景:为了保证低延迟,元数据的可扩展性较差、随文件规模性能和稳定性下降严重,无法支持如 AI 训练、自动驾驶等文件规模达到十亿甚至百亿规模的 AI 场景。

因此,设计出一款不仅能完美兼容传统应用,又能适应最新 AI 场景需求的分布式文件存储,显得意义重大。这样的分布式文件系统需要满足:

  • 完全兼容 POSIX 协议。

  • 在确保元数据低延迟、稳定的情况下,可线性扩展,支持百亿文件规模,具备超大规模文件数量元数据操作能力的同时具备超高的性能稳定性。

要想达到以上目标,百度沧海·文件存储 CFS 给出的技术解答是设计新一代的 Namespace 子系统,在实现创建文件每秒百万级 QPS 的同时,保证各项性能指标表现稳定。

这使得文件存储 CFS 不仅可以支持传统应用,作为传统业务上云的存储方案;也可以应用于最新的 AI 场景,满足海量文件规模处理的应用需求。

Namespace 的技术现状

Namespace 子系统的功能主要是维护文件系统的文件属性、目录树结构等元数据信息,同时支持兼容 POSIX 的目录树及文件操作,如:文件/目录创建、查找(Lookup/Getattr)删除及重命名(Rename)等。

当前,业界分布式文件系统领域衍生出各种类型的 Namespace 技术架构,可以归类为如下几种:

  • 单机架构:配合单机全内存,可做到低延迟,无法横向扩展,最大规模仅支持 5 亿文件数,代表产品为 HDFS。

  • 并行架构:适用于 HPC 等并行文件系统应用场景,元数据静态切分到多机部署,单机利用一主一备保证可用性,缺乏弹性扩展能力。

  • 分布式架构:将元数据按照某种方式切分和扩展到一组机器上,按照集群的方式管理。

相对于单机架构不可扩展及并行架构对扩展性的弱支持,分布式 Namespace 架构在扩展性上做的更加彻底。

那么直接引入一套现成的分布式 Namespace 架构是否可以直接解决上文提到的挑战呢? 

答案是否定的,因为现有的分布式 Namespace 架构都存在各自的局限性和不足。

  • 基于 Hash Based 架构尽管具有很好的扩展性及负载均衡效果,但是其牺牲了 POSIX 兼容语义的支持。该架构方案将文件全路径 Hash 来组织打散到分布式 Meta 集群,对于 Lookup 路径查找非常友好同时容易实现,但是缺点是牺牲了元数据的局部性,尤其是 rename 的实现复杂度高且性能很差,这类架构主要停留在学术研究,没有在工业界大规模应用,典型的系统如 Dr.Hadoop,GiraffaFS;

  • 基于子树划分架构保证了元数据的局部性,可兼容 POSIX 语义,但是扩展性不够好 。该架构方案通过将层级目录树拆分成多个子树并将每颗子树按照相应的负载策略部署到不同的 Meta 节点中,单节点上具有很好的元数据局部性,但是缺点就是容易产生热点,负载均衡难以实现,扩展性不够好,典型的实现如 CephFS、IndexFS;

相对于前两种架构都具有明显的局限性且难以弥补,近几年脱颖而出的基于分布式数据库或分布式 KV 的 Namespace 架构兼顾了扩展性及 POSIX 语义兼容支持。

该方案通常采用分层架构:上层维护了一层元数据处理层,该层将目录树 POSIX 操作转化为数据库事务请求。下层是分布式数据库或分布式 KV 层,负责元数据的存储管理,同时对上层的数据库事务请求进行语义处理。

通过这样的分层架构就做到了对 POSIX 语义的完整兼容。同时,利用分布式数据库或分布式 KV 本身的可扩展性,做到了 NameSpace 架构的可扩展。

另外,为了进一步提升 POSIX 语义的处理速度,通常会维护一层 Hint Cache 来加速元数据的处理。

虽然该架构方案可以在存储层面做到弹性可扩展且简化了元数据的处理,但由于现有架构对锁及数据库事务存在强依赖,Namespace 在写延迟及写性能的扩展性层面仍然存在不足,难以支持每秒创建百万以上的文件的需求。

百度智能云 CFS 在此架构基础上改进和扩展出新一代的 Namespace 架构。

CFS 的 Namespace 架构

百度沧海的文件存储 CFS 作为百度智能云提供的分布式文件存储服务,通过标准的文件访问协议(NFS/SMB),为云上的虚机、容器等计算资源提供无限扩展、高可靠、地域级别共享的文件存储能力。

为了兼顾传统及 AI 场景的用户需求,弹性可扩展且兼容 POSIX 一直被作为 CFS 架构尤其是 Namespace 子系统的重要设计目标。

基于分布式 KV 架构,CFS 采用自研的分布式索引系统来支撑 Namespace 子系统,并基于该索引系统实现了分层架构,即 POSIX 语义层+分布式 KV 层。该索引系统经过 CFS 产品多年的打磨,目前可以非常好地解决 Namespace 层级结构扩展性与低延迟的需求。

相比于其他基于分布式数据库或分布式 KV 的分布式文件系统(比如 HopsFS),CFS 不直接依赖底层分布式数据库或分布式 KV 层的锁及事务机制来维持 POSIX 语义,而是通过以下创造性的设计配合来解决:

  • 适配层级结构数据模型,定制化 Schema 来降低 KV 层数据之间的关联性。

  • 在 POSIX 语义层设计一套针对 Namespace 层级结构、相对数据库锁及事务机制更轻量的一致性协议,保障所有 Namespace 层的读写操作不会破坏 POSIX 语义。

基于以上设计,CFS 在 Namespace 层的读写操作都具备非常低的延迟和好的线性扩展能力,具体性能参考下文测试结果。

除此之外,为了进一步优化延迟,CFS 团队在该架构的各个层面做了深入优化:

  • 单机层面进一步优化延迟:单机 KV 引擎适配了 AEP 等高速硬件,确保 Namespace 关键路径低延迟。

  • 一致性协议层面进一步优化扩展性及延迟:POSIX 语义层一致性协议采用无状态实现,不同节点之间无需同步、无需单独部署,而是作为 LIB 编译到 Client 或者接入模块,简化了架构的维护及 Namespace 读写路径,同时进一步保障了架构的可扩展性。

Namespace 性能测试

为了验证 CFS 产品 Namespace 架构的扩展性及性能稳定性,我们分别从扩展索引系统 KV 节点和 Meta Client 节点两个维度来测试,在验证扩展性同时给出相应单次请求的延迟数据及稳定性。

说明:以下测试 workload 均采用 Mdtest 作为元数据测试工具,其中 Meta Client 作为文件系统协议接入层对接标准的 NFS 协议,压测中的线程工作在相同 FS 不同路径上。

KV 节点扩展 

以下数据对比了 10 个 KV 节点和 20 个 KV 节点在并发 mkdir 的性能数据表现(图中 BE 对应分布式 KV 层一个后端 KV 节点):

通过以上数据可以看出:

  • 20 个 KV 节点相对于 10 个 KV 节点在写吞吐上接近于两倍的提升;

  • 当系统负载正常情况下一次 Namespace 写延迟只需要 2ms 左右;

  • 当系统负载过高且瓶颈来到 KV 层,延迟长尾表现稳定;

综上,可以看出 CFS 的架构在 KV 层可以支持线性扩展。

Meta Client 扩展  

以下是基于集群的 KV 层固定为 24 个 KV 节点的对应数据,一方面通过扩展 Meta Client 数来验证架构在语义层的扩展性,另一方面验证架构在读和写是否具备突破百万 QPS 的能力。

通过以上数据可以看出:

  • Namespace 写和读吞吐可以在 POSIX 语义层做到线性扩展,其中写操作(文件\目录创建)可以达到 100 万 QPS,即每秒可支持创建百万文件;路径查找(Lookup)可以达到 400 万 QPS,目录/文件属性获取(Getattr)可以达到 600 万 QPS。

  • 延迟方面写延迟为 2ms,读延迟只需要百 us 级。

CFS 可以在元数据读写操作上都可以做到支持线性扩展的同时保证低延迟以及性能稳定性,并且在此基础上完成每秒创建百万文件的挑战。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1339592.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【产品经理】axure中继器的使用——表格增删改查分页实现

笔记为个人总结笔记,若有错误欢迎指出哟~ axure中继器的使用——表格增删改查分页实现 中继器介绍总体视图视频预览功能1.表头设计2.中继器3.添加功能实现4.删除功能实现5.修改功能实现6.查询功能实现7.批量删除 中继器介绍 在 Axure RP9 中,中继器&…

IntelliJ IDEA Apache Dubbo,IDEA 官方插件正式发布!

作者:刘军 最受欢迎的 Java 集成开发环境 IntelliJ IDEA 与开源微服务框架 Apache Dubbo 社区强强合作,给广大微服务开发者带来了福音。与 IntelliJ IDEA 2023.2 版本一起,Jetbrains 官方发布了一款全新插件 - Apache Dubbo in Spring Frame…

matlab列优先与高维矩阵重构

由于matlab在列化a(:)以及reshape(a)等操作中是列优先的,所以要重构出新的高维度矩阵,通常要把reshape和permute结合起来使用。 先到 http://caffe.berkeleyvision.org/ 下载 训练好的model bvlc_reference_caffenet.caffemodel; 更多caffe使用也请参看…

C#编程艺术:Fizzler库助您高效爬取www.twitter.com音频

数据是当今数字时代的核心资源,但是从互联网上抓取数据并不容易。本文将教您如何利用C#编程艺术和Fizzler库高效爬取Twitter上的音频数据,让您轻松获取所需信息。 Twitter简介 Twitter是全球最大的社交媒体平台之一,包含丰富的音频资源。用…

机器学习系列--R语言随机森林进行生存分析(1)

随机森林(Breiman 2001a)(RF)是一种非参数统计方法,需要没有关于响应的协变关系的分布假设。RF是一种强大的、非线性的技术,通过拟合一组树来稳定预测精度模型估计。随机生存森林(RSF&#xff0…

【Pytorch】学习记录分享8——PyTorch自然语言处理基础-词向量模型Word2Vec

【Pytorch】学习记录分享7——PyTorch自然语言处理基础-词向量模型Word2Vec 1. 词向量模型Word2Vec)1. 如何度量这个单词的?2.词向量是什么样子?3.词向量对应的热力图:4.词向量模型的输入与输出![在这里插入图片描述](https://img-blog.csdni…

solidity案例详解(七)复杂众筹合约

自己原创智能合约,有作业需求可加下面的图片中的裙 1、在 Remix 中,以 Account1 完成“众筹项目”合约的编译和部署。(显示合约、函数、状态变量、结构体、事件的命名) 2、在 Remix 中,以 Account2 完成“参与众筹”合…

【架构】企业信息安全体系架构详解

企业信息安全体系架构来说,是包含技术、运维、管理3个层面。本文说的安全架构,主要集中讨论偏研发技术层面的安全架构。 安全性是软件研发技术体系,系统架构设计阶段的一个关键DFX能力,与可靠性、可服务性、性能等架构属性并列。由于安全性设计自身的特点,涉及到系统架构…

【ARMv8M Cortex-M33 系列 2.1 -- Cortex-M33 使用 .hex 文件介绍】

文章目录 HEX 文件介绍英特尔十六进制文件格式记录类型hex 示例Cortex-M 系列hex 文件的使用 HEX 文件介绍 .hex 文件通常用于微控制器编程,包括 ARM Cortex-M 系列微控制器。这种文件格式是一种文本记录,用于在编程时传递二进制信息。.hex 文件格式最常…

Python+OpenCV 零基础学习笔记(1):anaconda+vscode+jupyter环境配置

文章目录 前言相关链接环境配置:AnacondaPython配置OpenCVOpencv-contrib:Opencv扩展 Notebook:python代码笔记vscode配置配置AnacondaJupyter文件导出 前言 作为一个C# 上位机,我认为上位机的终点就是机器视觉运动控制。最近学了会Halcon发现机器视觉还…

『Linux升级路』冯诺依曼体系结构与操作系统

🔥博客主页:小王又困了 📚系列专栏:Linux 🌟人之为学,不日近则日退 ❤️感谢大家点赞👍收藏⭐评论✍️ 目录 一、冯诺依曼体系结构 📒1.1为什么要有体系结构 📒1.2…

23款奔驰GLC260L升级原厂540全景影像 高清环绕的视野

嗨 今天给大家介绍一台奔驰GLC260L升级原厂360全景影像 新款GLC升级原厂360全景影像 也只需要安装前面 左右三个摄像头 后面的那个还是正常用的,不过不一样的是 升级完成之后会有多了个功能 那就是新款透明底盘,星骏汇小许 Xjh15863 左右两边只需要更换…

Next Station of Flink CDC

摘要:本文整理自阿里云智能 Flink SQL、Flink CDC 负责人伍翀(花名:云邪),在 Flink Forward Asia 2023 主会场的分享。Flink CDC 是一款基于 Flink 打造一系列数据库的连接器。本次分享主要介绍 Flink CDC 开源社区在过…

【TensorFlow 精简版】TensorFlow Lite

目录 一 TensorFlow Lite简介 二 开发 三 开始使用 一 TensorFlow Lite简介 TensorFlow Lite 是一组工具,可帮助开发者在移动设备、嵌入式设备和 loT 设备上运行模型,以便实现设备端机器学习。 针对设备端的机器学习进行的优化: ① 延时&…

NLP 自然语言处理实战

自然语言处理 ( Natural Language Processing, NLP) 是计算机科学领域与人工智能领域中的一个重要方向。它研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法,用于分析理解机器与人之间的交互,常用的领域有:实体识别、文本纠错…

STM32 IIC开发学习

1IIC总线时序图 ① 起始信号 当 SCL 为高电平期间,SDA 由高到低的跳变。起始信号是一种电平跳变时序信号,而不是 一个电平信号。该信号由主机发出,在起始信号产生后,总线就会处于被占用状态,准备数据 传输。 ② 停止信…

深度!把握这三点,即可选出适合能源行业的数据摆渡解决方案

在能源行业中,网络隔离通常采用物理隔离方式,即将能源行业网络与外部网络进行物理隔离,避免外部网络对能源行业网络的攻击和入侵。 同时,网络隔离也可以采用逻辑隔离方式,即在能源行业网络和外部网络之间设置防火墙、入…

【ES6】Class继承-super关键字

目录 一、前言二、ES6与ES5继承机制区别三、super作为函数1、构造函数this1)、首先要明确this指向①、普通函数②、箭头函数③、注意事项 2)、其次要明确new操作符做了哪些事情 2、super()的用法及注意点1)、用法2)、注意点 四、s…

算法的四大思想之一:动态规划

一、动态规划 什么是动态规划? 动态规划(Dynamic Programming,简称DP)是一种解决问题的算法思想,它将一个大问题拆分成多个相互重叠的子问题,并且通过解决这些子问题来求解原始问题 核心思想 拆分大问题…

vue3+luckyexcel+php在线编辑excel文件

开发过程中,需要开发一个在线编辑excel文档的功能,找到了这个合适的组件 Luckysheet ,一款纯前端类似excel的在线表格,功能强大、配置简单、完全开源。 可以导入文档,预览、编辑、保存、导出等功能,可以满…