用编程解决习题【计算机图像处理】
- 前言
- 版权
- 第三章 03采样量化与像素间关系
- 三种距离计算
- 编程
- 第六章 06图像的直方图变换
- 均衡化直方图
- 编程
- 规定化直方图
- 编程
- 第七章 07图像的噪声抑制
- 均值滤波 中值滤波计算
- 编程
- knn滤波计算
- 编程
- 第十章 10二值图像的分析
- 贴标签 膨胀 腐蚀
- 编程
- 最后
前言
2023-12-27 21:11:27
以下内容源自《【计算机图像处理】》
仅供学习交流使用
版权
禁止其他平台发布时删除以下此话
本文首次发布于CSDN平台
作者是CSDN@日星月云
博客主页是https://jsss-1.blog.csdn.net
禁止其他平台发布时删除以上此话
第三章 03采样量化与像素间关系
三种距离计算
一、请计算像素点a(0,1)和像素点b(6,9)之间的欧氏距离,棋盘距离以及城区距离。
欧氏距离:((6-0)^2+(9-1)^2)^0.5=10 345 6810勾股数
棋盘距离:max(|0-6|,|1-9|)=8
城区距离:(|0-6|+|1-9|)=14
编程
import java.util.Scanner;
/**
* 第三章作业
*
* 2023-12-27 21:19:15
*
* 一、请计算像素点a(0,1)和像素点b(6,9)之间的欧氏距离,棋盘距离以及城区距离。
* 欧氏距离:((6-0)^2+(9-1)^2)^0.5=10 345 6810勾股数
* 棋盘距离:max(|0-6|,|1-9|)=8
* 城区距离:(|0-6|+|1-9|)=14
*
*
*
*/
public class Main3 {
static class Point{
int x;
int y;
public Point(){
}
public Point(int x,int y){
this.x=x;
this.y=y;
}
//欧式距离
public static double distance1(Point p1,Point p2){
return Math.sqrt(Math.pow(p1.x-p2.x,2)+Math.pow(p1.y-p2.y,2));
}
//棋盘距离
public static double distance2(Point p1,Point p2){
return Math.max(Math.abs(p1.x-p2.x),Math.abs(p1.y-p2.y));
}
//城区距离
public static double distance3(Point p1,Point p2){
return Math.abs(p1.x-p2.x)+Math.abs(p1.y-p2.y);
}
}
public static Point p1;
public static Point p2;
//手动改值初始化
public static void init(){
p1=new Point(0,1);
p2=new Point(6,9);
}
//自动输入初始化
//0 1 6 9
static void input() {
Scanner scanner=new Scanner(System.in);
int x1=scanner.nextInt();
int y1=scanner.nextInt();
int x2=scanner.nextInt();
int y2=scanner.nextInt();
p1=new Point(x1,y1);
p2=new Point(x2,y2);
}
public static void main(String[] args) {
// input(); //输入
init();//手动改值
System.out.println(Point.distance1(p1,p2));//10.0
System.out.println(Point.distance2(p1,p2));//8.0
System.out.println(Point.distance3(p1,p2));//14.0
}
}
第六章 06图像的直方图变换
均衡化直方图
一幅灰度级为8的图像对应的归一化直方图为[0.17,0.25,0.21,0.16,0.07,0.08,0.04,0.02]。用列表法计算直方图均衡化后图像的灰度级和对应的概率,并画出处理前后直方图的对比图。
原始灰度级k | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|---|
原始直方图sk | 0.17 | 0.25 | 0.21 | 0.16 | 0.07 | 0.08 | 0.04 | 0.02 |
累计直方图tk | 0.17 | 0.42 | 0.63 | 0.79 | 0.86 | 0.94 | 0.98 | 1.0 |
扩展取整 | 1 | 2 | 4 | 5 | 6 | 6 | 6 | 7 |
映射 | 0->1 | 1->2 | 2->4 | 3->5 | 4->6 | 5->6 | 6->6 | 7->7 |
均衡化直方图 | 0.17 | 0.25 | 0.21 | 0.16 | 0.19 | 0.02 |
编程
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Scanner;
public class Main6 {
//原始直方图
static double[] sk;
static int n;
static int l;
//累计直方图
static double[] tk;
//扩展取整
static int [] extend;
//均衡化后的直方图
static double[] equalized;
//手动改值初始化
public static void init(){
sk =new double[]{0.17,0.25,0.21,0.16,0.07,0.08,0.04,0.02};
n= sk.length;
l= n-1;
}
//自动输入初始化
//8
//0.17 0.25 0.21 0.16 0.07 0.08 0.04 0.02
static void input() {
Scanner scanner=new Scanner(System.in);
//输入长度
n= scanner.nextInt();
l=n-1;
sk =new double[n];
int c=0;
for (int i = 0; i < n; i++) {
sk[c++]= scanner.nextDouble();
}
}
public static void main(String[] args) {
// input(); //输入
init();//手动改值
equalize();
}
//均衡化
public static void equalize(){
System.out.println("输出原始直方图:");
System.out.println(Arrays.toString(sk));
tk=new double[n];
tk[0]=sk[0];
for (int i = 1; i < n; i++) {
tk[i]=tk[i-1]+sk[i];
}
System.out.println("输出累计直方图:");
System.out.println(Arrays.toString(tk));
extend=new int[n];
for (int i = 0; i < n; i++) {
extend[i]=(int)(tk[i]*l);
}
System.out.println("输出扩展取整:");
System.out.println(Arrays.toString(extend));
ArrayList<ArrayList<Integer>> map=new ArrayList<>();
for (int i = 0; i < n; i++) {
map.add(new ArrayList<>());
}
for (int i = 0; i < n; i++) {
map.get(extend[i]).add(i);
}
System.out.println("输出映射关系:");
for (int i = 0; i < n; i++) {
ArrayList<Integer> cur=map.get(i);
if (!cur.isEmpty()){
System.out.print(cur+"->"+i+"\t");
}
}
System.out.println();
equalized=new double[n];
for (int i = 0; i < n; i++) {
ArrayList<Integer> cur=map.get(i);
if (!cur.isEmpty()){
for (Integer j : cur) {
equalized[i]+=sk[j];
}
}
}
System.out.println("输出均衡化的直方图:");
System.out.println(Arrays.toString(equalized));
}
}
输出原始直方图:
[0.17, 0.25, 0.21, 0.16, 0.07, 0.08, 0.04, 0.02]
输出累计直方图:
[0.17, 0.42000000000000004, 0.63, 0.79, 0.8600000000000001, 0.9400000000000001, 0.9800000000000001, 1.0]
输出扩展取整:
[1, 2, 4, 5, 6, 6, 6, 7]
输出映射关系:
[0]->1 [1]->2 [2]->4 [3]->5 [4, 5, 6]->6 [7]->7
输出均衡化的直方图:
[0.0, 0.17, 0.25, 0.0, 0.21, 0.16, 0.19000000000000003, 0.02]
规定化直方图
编程
import java.util.Arrays;
import java.util.Scanner;
public class Main6_2 {
//原始直方图
static double[] sk;
static int n;
static int l;
//累计直方图
static double[] tk;
//扩展取整
static int [] extend;
//均衡化后的直方图
static double[] equalized;
//手动改值初始化
public static void init1(){
sk =new double[]{0.19,0.25,0.21,0.16,0.08,0.06,0.03,0.02};
n= sk.length;
l= n-1;
}
//自动输入初始化
/*
8
0.17 0.25 0.21 0.16 0.07 0.08 0.04 0.02
*/
static void input1() {
Scanner scanner=new Scanner(System.in);
//输入长度
n= scanner.nextInt();
l=n-1;
sk =new double[n];
int c=0;
for (int i = 0; i < n; i++) {
sk[c++]= scanner.nextDouble();
}
}
public static void init2(){
sk =new double[]{0,0,0,0.2,0,0.6,0,0.2};
n= sk.length;
l= n-1;
}
/*
8
0 0 0 0.2 0 0.6 0 0.2
*/
static void input2() {
Scanner scanner=new Scanner(System.in);
//输入长度
n= scanner.nextInt();
l=n-1;
sk =new double[n];
int c=0;
for (int i = 0; i < n; i++) {
sk[c++]= scanner.nextDouble();
}
}
static double[] sk1;
public static void main(String[] args) {
double[] tk1 = op1();
double[] tk2 = op2();
sml(tk1,tk2);
gml(tk1,tk2);
}
private static double[] op1() {
//输入原始直方图
// input1(); //输入
init1();//手动改值
sk1=new double[n];
for (int i = 0; i < n; i++) {
sk1[i]=sk[i];
}
System.out.println("原始直方图");
System.out.println(Arrays.toString(sk1));
step1();
double[] tk1=new double[n];
for (int i = 0; i < n; i++) {
tk1[i]=tk[i];
}
System.out.println("原始累积直方图");
System.out.println(Arrays.toString(tk1));
record1=new int[n];
for (int i = 0; i < n; i++) {
record1[i]=record[i];
}
System.out.println("record1");
System.out.println(Arrays.toString(record1));
return tk1;
}
private static double[] op2() {
//输入规定直方图
// input1(); //输入
init2();//手动改值
System.out.println("规定直方图");
System.out.println(Arrays.toString(sk));
step1();
double[] tk2=new double[n];
for (int i = 0; i < n; i++) {
tk2[i]=tk[i];
}
System.out.println("规定累积直方图");
System.out.println(Arrays.toString(tk2));
record2=new int[n];
for (int i = 0; i < n; i++) {
record2[i]=record[i];
}
System.out.println("record2");
System.out.println(Arrays.toString(record2));
return tk2;
}
//就是tk1距离tk2中的哪个最近,则tk1的下标对应tk2中的下标
//因为都是非递减数列,所以使用双指针就好了,只是O(n)的复杂度
//有个问题就是可能和原来的不对应,就是原来是0,加了前面的值才有值的
//所以需要使用record来记录
public static void sml(double[] tk1,double[] tk2){
int[] map=new int[n];
for (int i = 0,j=0 ; i <n; i++) {
for (; j < n;j++ ) {
if (j+1==n||Math.abs(tk1[i]-tk2[j])<Math.abs(tk1[i]-tk2[j+1])){
break;
}
}
map[i]=record2[j];//不一定是j,而是j所前面的值
}
System.out.println("sml映射");
System.out.println(Arrays.toString(map));
double[] smled=new double[n];
for (int i = 0; i < n; i++) {
smled[map[i]]+=sk1[i];
}
System.out.println("变换后直方图");
System.out.println(Arrays.toString(smled));
}
//tk2到tk1的距离
//因为都是非递减数列,所以使用双指针就好了,只是O(n)的复杂度
public static void gml(double[] tk1,double[] tk2){
int[] map=new int[n];
for (int i = 0,j=0 ; i <n; i++) {
//跳过为0的或者和之前一样的
if(tk2[i]==0||(i-1>=0&&tk2[i]==tk2[i-1])){
continue;
}
//只要tk[i]到tk1[j]的距离一直递减就一直映射j->i
for (; j < n;j++ ) {
if (j-1<0||Math.abs(tk1[j]-tk2[i])<Math.abs(tk1[j-1]-tk2[i])){
map[j]=i;
}else {
break;
}
}
}
System.out.println("gml映射");
System.out.println(Arrays.toString(map));
double[] gmled =new double[n];
for (int i = 0; i < n; i++) {
gmled[map[i]]+=sk1[i];
}
System.out.println("变换后直方图");
System.out.println(Arrays.toString(gmled));
}
static int[] record;
static int[] record1;
static int[] record2;
private static void step1() {
record=new int[n];
tk=new double[n];
tk[0]=sk[0];
record[0]=0;
for (int i = 1; i < n; i++) {
if(sk[i]==0){
record[i]=record[i-1];
}else {
record[i]=i;
}
tk[i]=tk[i-1]+sk[i];
}
}
}
原始直方图
[0.19, 0.25, 0.21, 0.16, 0.08, 0.06, 0.03, 0.02]
原始累积直方图
[0.19, 0.44, 0.65, 0.81, 0.89, 0.95, 0.98, 1.0]
record1
[0, 1, 2, 3, 4, 5, 6, 7]
规定直方图
[0.0, 0.0, 0.0, 0.2, 0.0, 0.6, 0.0, 0.2]
规定累积直方图
[0.0, 0.0, 0.0, 0.2, 0.2, 0.8, 0.8, 1.0]
record2
[0, 0, 0, 3, 3, 5, 5, 7]
sml映射
[3, 3, 5, 5, 5, 7, 7, 7]
变换后直方图
[0.0, 0.0, 0.0, 0.44, 0.0, 0.45, 0.0, 0.11]
gml映射
[3, 5, 5, 5, 7, 7, 7, 7]
变换后直方图
[0.0, 0.0, 0.0, 0.19, 0.0, 0.62, 0.0, 0.19]
第七章 07图像的噪声抑制
均值滤波 中值滤波计算
此处注意,要点明凡是代替的点就是噪声点。
1.均值滤波
周围所有邻居的平均值
2.中值滤波
周围所有邻居的中位数
3.KNN滤波
周围和他差值最小的K个邻居的平均值
编程
import java.util.Arrays;
import java.util.Scanner;
/**
*
* 1、设原图像为
* 4 4
* 59 60 58 57
* 61 90 59 57
* 62 59 0 58
* 56 61 60 56
*
*
* 请对其进行均值滤波和中值滤波,并分析结果异同
*
*
*/
public class Main7 {
static int[][] grid;
static int n;
static int m;
//------------------------------------------------------------------------------------
public static void init(){
grid= new int[][]{
{59, 60, 58, 57},
{61, 90, 59, 57},
{62, 59, 0, 58},
{56, 61, 60, 56}
};
n= grid.length;
m=grid[0].length;
}
/*
4 4
59 60 58 57
61 90 59 57
62 59 0 58
56 61 60 56
*/
public static void input(){
Scanner scanner=new Scanner(System.in);
n=scanner.nextInt();
m=scanner.nextInt();
grid=new int[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
grid[i][j]=scanner.nextInt();
}
}
}
//------------------------------------------------------------------------------------
public static void main(String[] args) {
// input(); //输入
init();//手动改值
System.out.println("输出原始图像");
for (int i = 0; i < n; i++) {
System.out.println(Arrays.toString(grid[i]));
}
System.out.println("输出均值滤波图像");
int[][] meanFiltered=meanFiltering();
for (int i = 0; i < n; i++) {
System.out.println(Arrays.toString(meanFiltered[i]));
}
//输出中值滤波图像
System.out.println("输出中值滤波图像");
int[][] medianFiltered=medianFiltering();
for (int i = 0; i < n; i++) {
System.out.println(Arrays.toString(medianFiltered[i]));
}
}
//------------------------------------------------------------------------------------
private static int[][] meanFiltering(){
int[][] meanFiltered=new int[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
meanFiltered[i][j]=grid[i][j];
}
}
for (int i = 1; i < n-1; i++) {
for (int j = 1; j < m-1; j++) {
meanFiltered[i][j]=mean(i,j);
}
}
return meanFiltered;
}
//返回(x,y)周围9个点的均值
// 四舍五入
private static int mean(int x, int y) {
int sum=0;
for (int i = x-1; i <= x+1; i++) {
for (int j = y-1; j <= y+1; j++) {
sum+=grid[i][j];
}
}
return (int)(sum/9.0+0.5);
}
//------------------------------------------------------------------------------------
private static int[][] medianFiltering() {
int[][] medianFiltered=new int[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
medianFiltered[i][j]=grid[i][j];
}
}
for (int i = 1; i < n-1; i++) {
for (int j = 1; j < m-1; j++) {
medianFiltered[i][j]=median(i,j);
}
}
return medianFiltered;
}
private static int median(int x, int y) {
int[] arr=new int[9];
int c=0;
for (int i = x-1; i <= x+1; i++) {
for (int j = y-1; j <= y+1; j++) {
arr[c++]=grid[i][j];
}
}
Arrays.sort(arr);
int m=(9+1)/2;
return arr[m];
}
}
输出原始图像
[59, 60, 58, 57]
[61, 90, 59, 57]
[62, 59, 0, 58]
[56, 61, 60, 56]
输出均值滤波图像
[59, 60, 58, 57]
[61, 56, 55, 57]
[62, 56, 56, 58]
[56, 61, 60, 56]
输出中值滤波图像
[59, 60, 58, 57]
[61, 60, 59, 57]
[62, 61, 59, 58]
[56, 61, 60, 56]
knn滤波计算
此处注意,要点明凡是代替的点就是噪声点。
1.均值滤波
周围所有邻居的平均值
2.中值滤波
周围所有邻居的中位数
3.KNN滤波
周围和他差值最小的K个邻居的平均值
编程
/**
* 2、对下图进行KNN平滑滤波,并由结果指出图中的噪声点。
*
* 1 5 255 100 200 200
* 1 7 254 101 10 9
* 3 7 10 100 2 6
* 1 0 8 7 2 1
* 1 1 6 50 2 2
* 2 3 9 7 2 0
*/
import java.util.ArrayList;
import java.util.Arrays;
import java.util.PriorityQueue;
import java.util.Scanner;
public class Main7_2 {
static int[][] grid;
static int n;
static int m;
static int k=5;
//------------------------------------------------------------------------------------
public static void init(){
grid= new int[][]{
{1, 5, 255, 100, 200, 200},
{1, 7, 254, 101, 10, 9},
{3, 7, 10, 100, 2, 6},
{1, 0, 8, 7, 2, 1},
{1, 1, 6, 50, 2, 2},
{2, 3, 9, 7, 2, 0}
};
n= grid.length;
m=grid[0].length;
}
/*
6 6
1 5 255 100 200 200
1 7 254 101 10 9
3 7 10 100 2 6
1 0 8 7 2 1
1 1 6 50 2 2
2 3 9 7 2 0
*/
public static void input(){
Scanner scanner=new Scanner(System.in);
n=scanner.nextInt();
m=scanner.nextInt();
grid=new int[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
grid[i][j]=scanner.nextInt();
}
}
}
public static void main(String[] args) {
// input(); //输入
init();//手动改值
System.out.println("输出原始图像");
for (int i = 0; i < n; i++) {
System.out.println(Arrays.toString(grid[i]));
}
System.out.println("输出knn滤波图像");
int[][] knnFiltered=knnFiltering();
for (int i = 0; i < n; i++) {
System.out.println(Arrays.toString(knnFiltered[i]));
}
noise(knnFiltered);
}
private static void noise(int[][] knnFiltered) {
System.out.println("输出是否为噪声点");
int[][] isNoisePoint=new int[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if(grid[i][j]!= knnFiltered[i][j]){
isNoisePoint[i][j]=1;
}
}
}
for (int i = 0; i < n; i++) {
System.out.println(Arrays.toString(isNoisePoint[i]));
}
System.out.println("噪声点坐标");
ArrayList<int[]> noisePoints=new ArrayList<>();
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if(isNoisePoint[i][j]==1){
noisePoints.add(new int[]{i,j});
}
}
}
for (int[] noise:noisePoints) {
System.out.print("("+noise[0]+","+noise[1]+")\t");
}
System.out.println();
}
private static int[][] knnFiltering() {
int[][] knnFiltered=new int[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
knnFiltered[i][j]=grid[i][j];
}
}
for (int i = 1; i < n-1; i++) {
for (int j = 1; j < m-1; j++) {
knnFiltered[i][j]=knn(i,j);
}
}
return knnFiltered;
}
private static int knn(int x, int y) {
//优先队列:差值 和 本身的值
PriorityQueue<int[]> queue=new PriorityQueue<>((a,b)->a[0]-b[0]);
//按差值排列
for (int i = x-1; i <= x+1; i++) {
for (int j = y-1; j <= y+1; j++) {
queue.add(new int[]{Math.abs(grid[i][j]-grid[x][y]),grid[i][j]});
}
}
int sum=0;
for (int i = 0; i < k; i++) {
sum+=queue.poll()[1];
}
return (int)(1.0*sum/k+0.5);
}
}
输出原始图像
[1, 5, 255, 100, 200, 200]
[1, 7, 254, 101, 10, 9]
[3, 7, 10, 100, 2, 6]
[1, 0, 8, 7, 2, 1]
[1, 1, 6, 50, 2, 2]
[2, 3, 9, 7, 2, 0]
输出knn滤波图像
[1, 5, 255, 100, 200, 200]
[1, 6, 162, 64, 25, 9]
[3, 7, 8, 46, 4, 6]
[1, 1, 8, 7, 2, 1]
[1, 1, 7, 16, 2, 2]
[2, 3, 9, 7, 2, 0]
输出是否为噪声点
[0, 0, 0, 0, 0, 0]
[0, 1, 1, 1, 1, 0]
[0, 0, 1, 1, 1, 0]
[0, 1, 0, 0, 0, 0]
[0, 0, 1, 1, 0, 0]
[0, 0, 0, 0, 0, 0]
噪声点坐标
(1,1) (1,2) (1,3) (1,4) (2,2) (2,3) (2,4) (3,1) (4,2) (4,3)
第十章 10二值图像的分析
贴标签 膨胀 腐蚀
1)
原始图像
1 1 1 0 0 0
1 0 0 1 0 1
1 0 0 0 0 1
0 0 1 0 1 1
0 1 0 0 1 0
0 0 0 1 0 0
添标签
1 1 1 0 0 0
1 0 0 1 0 2
1 0 0 0 0 2
0 0 3 0 2 2
0 3 0 0 2 0
0 0 0 2 0 0
2)
原始图像
1 1 1 0 0 0
1 0 0 1 0 1
1 0 0 0 0 1
0 0 1 0 1 1
0 1 0 0 1 0
0 0 0 1 0 0
腐蚀
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
膨胀
1 1 1 1 1 0
1 0 0 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
0 1 1 1 1 0
0 0 0 1 0 0
编程
import java.util.Arrays;
import java.util.Scanner;
/**
*
* 设一个二值图像为
1 1 1 0 0 0
1 0 0 1 0 1
1 0 0 0 0 1
0 0 1 0 1 1
0 1 0 0 1 0
0 0 0 1 0 0
* 1)在8连通意义下,对该图贴标签
* 2)对上图分别进行一次腐蚀和膨胀运算,结构元素为S=[[1,0],[1,1]]
* 结构元素原点在S的 (1,1) 坐标处
*/
public class Main8 {
static int[][] grid;
static int n;
static int m;
static int k=2;
static int[][] s=new int[][]{
{1,0},
{1,1}
};
//------------------------------------------------------------------------------------
public static void init(){
grid= new int[][]{
{1, 1, 1, 0, 0, 0},
{1, 0, 0, 1, 0, 1},
{1, 0, 0, 0, 0, 1},
{0, 0, 1, 0, 1, 1},
{0, 1, 0, 0, 1, 0},
{0, 0, 0, 1, 0, 0}
};
n= grid.length;
m=grid[0].length;
}
/*
6 6
1 1 1 0 0 0
1 0 0 1 0 1
1 0 0 0 0 1
0 0 1 0 1 1
0 1 0 0 1 0
0 0 0 1 0 0
*/
public static void input(){
Scanner scanner=new Scanner(System.in);
n=scanner.nextInt();
m=scanner.nextInt();
grid=new int[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
grid[i][j]=scanner.nextInt();
}
}
}
//------------------------------------------------------------------------------------
public static void main(String[] args) {
// input(); //输入
init();//手动改值
System.out.println("输出原始图像");
for (int i = 0; i < n; i++) {
System.out.println(Arrays.toString(grid[i]));
}
int[][] label=labeling();
System.out.println("输出标签图像");
for (int i = 0; i < n; i++) {
System.out.println(Arrays.toString(label[i]));
}
int[][] corrosion=corrode();
System.out.println("输出腐蚀图像");
for (int i = 0; i < n; i++) {
System.out.println(Arrays.toString(corrosion[i]));
}
int[][] expansion=expand();
System.out.println("输出膨胀图像");
for (int i = 0; i < n; i++) {
System.out.println(Arrays.toString(expansion[i]));
}
}
static boolean[][] visited;
static int labelCount=1;
// /*
//8邻域
static int[][] step=new int[][]{
{-1,-1},{-1,0},{-1,1},
{0,-1},{0,1},
{1,-1},{1,0},{1,1}
};
static int stepN=8;
// */
/*
//4邻域
static int[][] step=new int[][]{
{-1,0}, {0,-1}, {0,1}, {1,0}
};
static int stepN=4;
*/
private static int[][] labeling() {
int[][] label=new int[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
label[i][j]=grid[i][j];
}
}
visited=new boolean[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (grid[i][j]==1){
if (!visited[i][j]){
dfs(i,j,label);
labelCount++;
}
}
}
}
return label;
}
private static void dfs(int x, int y,int[][] label) {
visited[x][y]=true;
label[x][y]=labelCount;
for (int i = 0; i < stepN; i++) {
int nextX=x+step[i][0];
int nextY=y+step[i][1];
if(nextX>=0&&nextX<n&&nextY>=0&&nextY<m){
if (grid[nextX][nextY]==1){
if (!visited[nextX][nextY]){
dfs(nextX,nextY,label);
}
}
}
}
}
//------------------------------------------------------------------------------------
//求腐蚀图像
private static int[][] corrode(){
int[][] corrosion=new int[n][m];
for (int i = 0; i < n-1; i++) {
for (int j = 0; j < m-1; j++) {
if (grid[i][j]==1){
corrosion[i][j]=co(i,j);
}
}
}
return corrosion;
}
//腐蚀操作
private static int co(int x, int y) {
//是否被腐蚀
int flag=1;
for (int i = 0; i < k; i++) {
for (int j = 0; j < k; j++) {
if(s[i][j]==1){
if (grid[x+i][y+j]!=1){
flag=0;
break;
}
}
}
if (flag==0){
break;
}
}
return flag;
}
//------------------------------------------------------------------------------------
//求膨胀图像
private static int[][] expand() {
int[][] expansion=new int[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
expansion[i][j]=grid[i][j];
}
}
for (int i = 0; i < n-1; i++) {
for (int j = 0; j < m-1; j++) {
if (grid[i][j]==0){
expansion[i][j]=ex(i,j);
}
}
}
return expansion;
}
//膨胀操作
private static int ex(int x, int y) {
//是否被膨胀
int flag=0;
for (int i = 0; i < k; i++) {
for (int j = 0; j < k; j++) {
if(s[i][j]==1){
if (grid[x+i][y+j]==1){
flag=1;
break;
}
}
}
if (flag==1){
break;
}
}
return flag;
}
}
输出原始图像
[1, 1, 1, 0, 0, 0]
[1, 0, 0, 1, 0, 1]
[1, 0, 0, 0, 0, 1]
[0, 0, 1, 0, 1, 1]
[0, 1, 0, 0, 1, 0]
[0, 0, 0, 1, 0, 0]
输出标签图像
[1, 1, 1, 0, 0, 0]
[1, 0, 0, 1, 0, 2]
[1, 0, 0, 0, 0, 2]
[0, 0, 3, 0, 2, 2]
[0, 3, 0, 0, 2, 0]
[0, 0, 0, 2, 0, 0]
输出腐蚀图像
[0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0]
输出膨胀图像
[1, 1, 1, 1, 1, 0]
[1, 0, 0, 1, 1, 1]
[1, 1, 1, 1, 1, 1]
[1, 1, 1, 1, 1, 1]
[0, 1, 1, 1, 1, 0]
[0, 0, 0, 1, 0, 0]
4邻域下的贴标签
输出原始图像
[1, 1, 1, 0, 0, 0]
[1, 0, 0, 1, 0, 1]
[1, 0, 0, 0, 0, 1]
[0, 0, 1, 0, 1, 1]
[0, 1, 0, 0, 1, 0]
[0, 0, 0, 1, 0, 0]
输出标签图像
[1, 1, 1, 0, 0, 0]
[1, 0, 0, 2, 0, 3]
[1, 0, 0, 0, 0, 3]
[0, 0, 4, 0, 3, 3]
[0, 5, 0, 0, 3, 0]
[0, 0, 0, 6, 0, 0]
最后
2023-12-28 10:36:51
我们都有光明的未来
祝大家考研上岸
祝大家工作顺利
祝大家得偿所愿
祝大家如愿以偿
点赞收藏关注哦