智能优化算法应用:基于侏儒猫鼬算法3D无线传感器网络(WSN)覆盖优化 - 附代码

news2024/11/19 11:29:23

智能优化算法应用:基于侏儒猫鼬算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于侏儒猫鼬算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.侏儒猫鼬算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用侏儒猫鼬算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 ,   d ( n , p ) ≤ R n 0 ,   e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f   d ( n o d e i , p ) ≤ r 0 ,   e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.侏儒猫鼬算法

侏儒猫鼬算法原理请参考:https://blog.csdn.net/u011835903/article/details/127455123
侏儒猫鼬算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径


侏儒猫鼬算法参数如下:

%% 设定侏儒猫鼬优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明侏儒猫鼬算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1338107.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【操作系统】探究文件系统奥秘:创建proc文件系统的解密与实战

​🌈个人主页:Sarapines Programmer🔥 系列专栏:Linux专栏:《探秘Linux | 操作系统解密》⏰诗赋清音:月悬苍穹泛清辉,梦随星河徜徉辉。情牵天际云千层,志立乘风意自飞。 ​ 目录 &a…

编译原理-----逆波兰表示法,四元式,三元式,间接三元式

目录 逆波兰表达式 四元式 三元式 间接三元式 逆波兰表达式 逆波兰表示法即后缀表达式,而后缀表达式需要注意: ①遵循从外向内进行分析 ②由算数优先符从低到高进行拆分,例如: 我们以“-”号作为分隔进行拆分,…

STM32逆变器方案

输入电压: 额定输入电压:DC110V 输入电压范围:DC77-137.5V 额定输出参数 电压:200V5%(200VAC~240VAC 可调) 频率: 42Hz0.5Hz(35-50 可调) 额定输出容量:1…

LNPMariadb数据库分离|web服务器集群

LNP&Mariadb数据库分离|web服务器集群 网站架构演变单机版LNMP独立数据库服务器web服务器集群与Session保持 LNP与数据库分离1. 准备一台独立的服务器,安装数据库软件包2. 将之前的LNMP网站中的数据库迁移到新的数据库服务器3. 修改wordpress网站配置…

【SpringBoot篇】解决缓存击穿问题② — 基于逻辑过期方式

🎊专栏【SpringBoot】 🍔喜欢的诗句:天行健,君子以自强不息。 🎆音乐分享【如愿】 🎄欢迎并且感谢大家指出小吉的问题🥰 文章目录 🎍什么是逻辑过期方式⭐思路🌹代码 &am…

Spring实战系列(三)了解容器的基本实现

我们可以通过GitHub或者码云下载spring-framework源码,这边是基于5.X版本进行下载学习的。 地址:https://github.com/spring-projects/spring-framework 分析Spring源码是非常一件的难的事情,只能一步步学习,一步步记录。 前面在…

人工智能的弱点有哪些?

尽管人工智能(Artificial Intelligence,AI)在许多领域取得了巨大的进展和成就,但它仍然存在一些弱点和挑战。以下是人工智能的一些常见弱点: 1. 数据依赖性:人工智能算法通常需要大量的高质量数据进行训练…

每日一题(LeetCode)----二叉树-- 二叉树的右视图

每日一题(LeetCode)----二叉树-- 二叉树的右视图 1.题目(199. 二叉树的右视图) 给定一个二叉树的 根节点 root,想象自己站在它的右侧,按照从顶部到底部的顺序,返回从右侧所能看到的节点值。 示例 1: 输入: [1,2,3,nu…

flex--伸缩性

1.flex-basis flex-basis 设置的是主轴方向的基准长度,会让宽度或高度失效。 备注:主轴横向:宽度失效;主轴纵向:高度失效 作用:浏览器根据这个属性设置的值,计算主轴上是否有多余空间&#x…

微信小程序picker组件扩展选择时间到秒插件

创建插件seldatetime // 插件JS部分 Component({// 一些选项options: {// 样式隔离:apply-shared 父影响子,shared父子相互影响, isolated相互隔离styleIsolation:"isolated",// 允许多个插槽multipleSlots: true},// 组件的对外属…

k8s的二进制部署(一)

k8s的二进制部署:源码包部署 环境: k8smaster01: 20.0.0.71 kube-apiserver kube-controller-manager kube-schedule ETCD k8smaster02: 20.0.0.72 kube-apiserver kube-controller-manager kube-schedule Node节点01: 20.0.0.73 kubelet kube-pr…

2008年AMC8数学竞赛中英文真题典型考题、考点分析和答案解析

今天我们来看看2008年AMC8竞赛的五道典型考题。欢迎您查看历史文章了解之前各年的真题解析,本系列会持续更新,直到大家参加完2024年的比赛。您有任何关于AMC8比赛的任何问题都可以问我,关于题目的解析也可以交流。 【推荐】为帮助孩子们更便…

人工智能_机器学习076_Kmeans聚类算法_体验_亚洲国家队自动划分类别---人工智能工作笔记0116

我们开始来看聚类算法 可以看到,聚类算法,其实就是发现事物之间的,潜在的关联,把 有关联的数据分为一类 我们先启动jupyter notebook,然后 我们看到这里我们需要两个测试文件 AsiaFootball.txt里面记录了,3年的,亚洲足球队的成绩

C语言转WebAssembly的全流程,及测试

第一步:安装环境 参考网址:https://emscripten.org/docs/getting_started/downloads.html 具体过程: 克隆代码:git clone https://github.com/emscripten-core/emsdk.git进入代码目录:cd emsdk获取最新远端代码&…

阿赵UE学习笔记——5、创建关卡元素

阿赵UE学习笔记目录 大家好,我是阿赵。   之前介绍了从空白模板创建关卡,接下来尝试着在这个空白的世界里面,创建一些内容。 一、创建地面 1、创建面片作为地面 创建——形状——平面,可以创建一个面片 在细节面板设置合适的…

深入了解云原生:定义与特征解析

文章目录 一、云原生概述1.1 什么是云原生1.2 云原生组成要素1.3 补充资料 二、云原生的目标2.1 云原生关键目标2.2 云原生特性 三、云原生应用 VS 传统单体应用参考资料 一、云原生概述 1.1 什么是云原生 (1)云原生定义 云原生(Cloud Native) 是一种软件架构和开发方法论&a…

云计算IaaS、PaaS和SaaS之

提供的服务来比较如下两图 示例图 示例图

PYTHON基础:决策树与随机森林算法

决策树与随机森林算法 决策树和随机森林都是用于分类和回归的的算法。决策树的原理是通过一系列的问题进行if、else的推导。随机森林是集合学习算法,即把很多的机器学习算法综合在一起组成一个更大的模型。 决策树的优劣势:处理容易,不需要…

DS八大排序之归并排序和计数排序

前言 前几期我们详细介绍了插入排序(直接插入排序和希尔排序)、选择排序(直接选择和堆排序)、交换排序(冒泡排序和快速排序)。并对快排的各个版本做了详细的介绍,本期我们来介绍把最后两个即外…

关于“Python”的核心知识点整理大全41

目录 scoreboard.py game_functions.py game_functions.py 14.3.8 显示等级 game_stats.py scoreboard.py scoreboard.py scoreboard.py game_functions.py game_functions.py alien_invasion.py 14.3.9 显示余下的飞船数 ship.py scoreboard.py 我们将最高得分圆整…