算法leetcode|94. 二叉树的中序遍历(多语言实现)

news2025/2/5 2:45:26

文章目录

  • 94. 二叉树的中序遍历:
    • 样例 1:
    • 样例 2:
    • 样例 3:
    • 提示:
  • 分析:
  • 题解:
    • rust:
    • go:
    • c++:
    • python:
    • java:


94. 二叉树的中序遍历:

给定一个二叉树的根节点 root ,返回 它的 中序 遍历 。

样例 1:

输入:
	
	root = [1,null,2,3]
	
输出:
	
	[1,3,2]

样例 2:

输入:
	
	root = []
	
输出:
	
	[]

样例 3:

输入:
	
	root = [1]
	
输出:
	
	[1]

提示:

  • 树中节点数目在范围 [0, 100]
  • -100 <= Node.val <= 100

分析:

  • 面对这道算法题目,二当家的再次陷入了沉思。
  • 二叉树的中序遍历和前序遍历,后续遍历是二叉树常用的遍历方式。
  • 使用递归方式比循环非递归方式更加简单,直观,易于理解。
  • 通常二叉树的中序遍历一定要使用一个栈结构,因为中序遍历的要求是遍历完左子树才能遍历当前节点,但是遍历到了左子树就无法再回到当前节点了,所以一般都是使用压栈的方式,先将当前节点压栈,遍历完左子树再将当前节点出栈,这样空间复杂度就会是 O(n) (递归也相当于使用了栈结构)。
  • 说起来这不是什么大问题,但是算法就是要想办法优化降低时间和空间的复杂度,于是寄出一种可以将空间复杂度降低为 O(1) 的中序遍历方式,Morris 中序遍历。
  • 事实上Morris 中序遍历不是没有代价的,由于要做额外的节点连接和恢复,相当于用时间换空间。

题解:

rust:

// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
//   pub val: i32,
//   pub left: Option<Rc<RefCell<TreeNode>>>,
//   pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
//   #[inline]
//   pub fn new(val: i32) -> Self {
//     TreeNode {
//       val,
//       left: None,
//       right: None
//     }
//   }
// }
use std::rc::Rc;
use std::cell::RefCell;
impl Solution {
    pub fn inorder_traversal(mut root: Option<Rc<RefCell<TreeNode>>>) -> Vec<i32> {
        let mut ans = Vec::new();

        while root != None {
            if root.as_ref().unwrap().borrow().left != None {
                // 寻找当前 root 节点的前驱节点:前驱 predecessor 节点就是当前 root 节点向左走一步,然后一直向右走至无法走为止
                let mut predecessor = root.as_ref().unwrap().borrow().left.clone();
                while predecessor.as_ref().unwrap().borrow().right != None
                    && predecessor.as_ref().unwrap().borrow().right != root {
                    predecessor = predecessor.unwrap().borrow().right.clone();
                }

                if predecessor.as_ref().unwrap().borrow().right == None {
                    // 让前驱 predecessor 节点的右指针指向当前 root 节点,继续遍历左子树,之后会再次回到当前 root 节点
                    predecessor.unwrap().borrow_mut().right = root.clone();
                    // 遍历左子树
                    root = root.unwrap().borrow().left.clone();
                    continue;
                } else {
                    // 左子树遍历完毕又回到了当前 root 节点,让前驱 predecessor 节点的右指针与当前 root 节点断开,恢复原样
                    predecessor.unwrap().borrow_mut().right = None;
                }
            }
            // 遍历当前 root 节点
            ans.push(root.as_ref().unwrap().borrow().val);
            // 遍历当前 root 节点的右子树
            root = root.unwrap().borrow().right.clone();
        }

        return ans;
    }
}

go:

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func inorderTraversal(root *TreeNode) []int {
    var ans []int

	for root != nil {
		if root.Left != nil {
			// 寻找当前 root 节点的前驱节点:前驱 predecessor 节点就是当前 root 节点向左走一步,然后一直向右走至无法走为止
			predecessor := root.Left
			for predecessor.Right != nil && predecessor.Right != root {
				// 有右子树且没有设置过指向 root,则继续向右走
				predecessor = predecessor.Right
			}

			if predecessor.Right == nil {
				// 让前驱 predecessor 节点的右指针指向当前 root 节点,继续遍历左子树,之后会再次回到当前 root 节点
				predecessor.Right = root
				// 遍历左子树
				root = root.Left
				continue
			} else {
				// 左子树遍历完毕又回到了当前 root 节点,让前驱 predecessor 节点的右指针与当前 root 节点断开,恢复原样
				predecessor.Right = nil
			}
		}
		// 遍历当前 root 节点
		ans = append(ans, root.Val)
		// 遍历当前 root 节点的右子树
		root = root.Right
	}

	return ans
}

c++:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    vector<int> inorderTraversal(TreeNode* root) {
        vector<int> ans;

        while (root != nullptr) {
            if (root->left != nullptr) {
                // 寻找当前 root 节点的前驱节点:前驱 predecessor 节点就是当前 root 节点向左走一步,然后一直向右走至无法走为止
                TreeNode *predecessor = root->left;
                while (predecessor->right != nullptr && predecessor->right != root) {
                    predecessor = predecessor->right;
                }

                if (predecessor->right == nullptr) {
                    // 让前驱 predecessor 节点的右指针指向当前 root 节点,继续遍历左子树,之后会再次回到当前 root 节点
                    predecessor->right = root;
                    // 遍历左子树
                    root = root->left;
                    continue;
                } else {
                    // 左子树遍历完毕又回到了当前 root 节点,让前驱 predecessor 节点的右指针与当前 root 节点断开,恢复原样
                    predecessor->right = nullptr;
                }
            }
            // 遍历当前 root 节点
            ans.emplace_back(root->val);
            // 遍历当前 root 节点的右子树
            root = root->right;
        }

        return ans;
    }
};

python:

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def inorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
        ans = list()

        while root is not None:
            if root.left is not None:
                # 寻找当前 root 节点的前驱节点:前驱 predecessor 节点就是当前 root 节点向左走一步,然后一直向右走至无法走为止
                predecessor = root.left
                while predecessor.right is not None and predecessor.right != root:
                    # 有右子树且没有设置过指向 root,则继续向右走
                    predecessor = predecessor.right

                if predecessor.right is None:
                    # 让前驱 predecessor 节点的右指针指向当前 root 节点,继续遍历左子树,之后会再次回到当前 root 节点
                    predecessor.right = root
                    # 遍历左子树
                    root = root.left
                    continue
                else:
                    # 左子树遍历完毕又回到了当前 root 节点,让前驱 predecessor 节点的右指针与当前 root 节点断开,恢复原样
                    predecessor.right = None
            # 遍历当前 root 节点
            ans.append(root.val)
            # 遍历当前 root 节点的右子树
            root = root.right

        return ans


java:

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> ans = new ArrayList<Integer>();

        while (root != null) {
            if (root.left != null) {
                // 寻找当前 root 节点的前驱节点:前驱 predecessor 节点就是当前 root 节点向左走一步,然后一直向右走至无法走为止
                TreeNode predecessor = root.left;
                while (predecessor.right != null && predecessor.right != root) {
                    predecessor = predecessor.right;
                }

                if (predecessor.right == null) {
                    // 让前驱 predecessor 节点的右指针指向当前 root 节点,继续遍历左子树,之后会再次回到当前 root 节点
                    predecessor.right = root;
                    // 遍历左子树
                    root = root.left;
                    continue;
                } else {
                    // 左子树遍历完毕又回到了当前 root 节点,让前驱 predecessor 节点的右指针与当前 root 节点断开,恢复原样
                    predecessor.right = null;
                }
            }
            // 遍历当前 root 节点
            ans.add(root.val);
            // 遍历当前 root 节点的右子树
            root = root.right;
        }

        return ans;
    }
}

非常感谢你阅读本文~
欢迎【点赞】【收藏】【评论】三连走一波~
放弃不难,但坚持一定很酷~
希望我们大家都能每天进步一点点~
本文由 二当家的白帽子:https://le-yi.blog.csdn.net/ 博客原创~


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1337163.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

云原生Kubernetes:K8S集群版本升级(v1.22.14 - v1.23.14)

目录 一、理论 1.K8S集群升级 2.环境 3.升级集群&#xff08;v1.23.14&#xff09; 4.验证集群&#xff08;v1.23.14&#xff09; 二、实验 1. 环境 2.升级集群&#xff08;v1.23.14&#xff09; 2.验证集群&#xff08;v1.23.14&#xff09; 一、理论 1.K8S集群升级 …

Wordpress对接Lsky Pro 兰空图床插件

Wordpress对接Lsky Pro 兰空图床插件 wordpress不想存储图片到本地&#xff0c;访问慢&#xff0c;wordpress图片没有cdn想要使用图床&#xff0c;支持兰空自定义接口 安装教程—在wp后台选择插件zip—然后启用—设置自己图床API接口就ok了&#xff0c;文件全部解密&#xff0c…

JavaScript——new关键字详解

一、new原理 new的实现步骤&#xff08;原理&#xff09;如下&#xff1a; 第一步&#xff1a;创建一个空对象&#xff0c;作为将要返回的对象。第二步&#xff1a;将这个空对象的原型指向构造函数的prototype属性&#xff0c;也就是将对象的__proto__属性指向构造函数的prot…

如何给beaglebone black狗板扩容

接上一篇 beaglebone black狗板&#xff0c;交叉编译Qt5&#xff08;eglfs&#xff09;-CSDN博客 默认的分区大小已经不够了&#xff0c;需要调整 这里改成500M&#xff0c;能勉强正常&#xff0c;但是SD是32G还是有大量的剩余空间没被使用 这里可以用以下两类方法来把剩余的…

Spring Boot整合MyBatis-Plus框架快速上手

最开始&#xff0c;我们要在Java中使用数据库时&#xff0c;需要使用JDBC&#xff0c;创建Connection、ResultSet等&#xff0c;然后我们又对JDBC的操作进行了封装&#xff0c;创建了许多类似于DBUtil等工具类。再慢慢的&#xff0c;出现了一系列持久层的框架&#xff1a;Hiber…

【Linux驱动】驱动框架的进化 | 总线设备驱动模型

&#x1f431;作者&#xff1a;一只大喵咪1201 &#x1f431;专栏&#xff1a;《Linux驱动》 &#x1f525;格言&#xff1a;你只管努力&#xff0c;剩下的交给时间&#xff01; 目录 &#x1f969;驱动框架的进化&#x1f960;分层&#x1f960;面向对象&#x1f960;编程&am…

一台服务器​最大并发 tcp 连接数多少?65535?

首先&#xff0c;问题中描述的65535个连接指的是客户端连接数的限制。 在tcp应用中&#xff0c;server事先在某个固定端口监听&#xff0c;client主动发起连接&#xff0c;经过三次握手后建立tcp连接。那么对单机&#xff0c;其最大并发tcp连接数是多少呢&#xff1f; 如何标…

将elementUI,NaiveUI的progress环形进度条设置为渐变色

需求 &#xff1a;进度条要有一个渐变效果。效果图&#xff1a; NaiveUI和elementUI的官方progress组件都是只能设置一种颜色&#xff0c;不符合需求所以改一下。 其实NaiveUI和elementUI设置进度条的实现方式基本一样都是使用svg渲染出两个path&#xff0c;第一个是底色&…

教你一分钟弄清屏幕SPI接口名称

相关文章 快速入门ESP32——开发环境配置Arduino IDE 快速入门ESP32——开发环境配置PlatformIO IDE 快速入门ESP32—— platformIO添加开源库和自己的开发库 一分钟弄清屏幕SPI接口名称 前言一、屏幕SPI接口名称二、与单片机连接总结 前言 最近&#xff0c;我在捣鼓CD屏幕的SP…

服务器系统时间不同步如何处理

在分布式计算环境中&#xff0c;服务器系统时间的同步至关重要。然而&#xff0c;由于各种原因&#xff0c;服务器系统时间不同步的问题时有发生,这可能会导致严重的问题&#xff0c;如日志不准确、证书验证失败等。下面我们可以一起探讨下造成服务器系统时间不同的原因以及解决…

理解io/nio/netty

一、io io即input/output&#xff0c;输入和输出 1.1 分类 输入流、输出流&#xff08;按数据流向&#xff09; 字节流&#xff08;InputStream/OutputStream&#xff08;细分File/Buffered&#xff09;&#xff09;、字符流(Reader/Writer&#xff08;细分File/Buffered/pu…

iClient for JavaScript如何以mvt矢量瓦片的形式加载数据服务

刘大 这里写目录标题 前言1.iServer中的预览页面2.iClient for JavaScript加载2.1 构建Style2.2 iCient加载2.2.1Leaflet & MapboxGL2.2.2 OpenLayers 前言 在提到查看iServer REST数据服务的概况的时候&#xff0c;大家总会想到说&#xff0c;通过发布对应的地图服务或者…

一文读懂SoBit 跨链桥教程

从BTC网络到Solana网络桥接BRC20 1.打开SoBit平台&#xff1a;在您的网络浏览器中启动SoBit Bridge应用程序。 2.连接您的钱包&#xff1a; 选择SoBit界面右上角的比特币网络来连接您的数字钱包。 3.选择源链、目标链和您想桥接的代币&#xff1a; 从下拉菜单中选择’BTC’作为…

JVM入门到入土-Java虚拟机寄存器指令集与栈指令集

JVM入门到入土-Java虚拟机寄存器指令集与栈指令集 HotSpot虚拟机中的任何操作都需要入栈和出栈的步骤。 由于跨平台性的设计&#xff0c;Java的指令都是根据栈来设计的。不同平台CPU架构不同&#xff0c;所以不能设计为基于寄存器的。优点是跨平台&#xff0c;指令集小&#x…

k8s---kubernets

目录 一、Kurbernetes 1.2、K8S的特性&#xff1a; 1.3、docker和K8S&#xff1a; 1.4、K8S的作用&#xff1a; 1.5、K8S的特性&#xff1a; 二、K8S集群架构与组件&#xff1a; 三、K8S的核心组件&#xff1a; 一、master组件&#xff1a; 1、kube-apiserver&#xff1…

【Spring实战】07 JPA

文章目录 1. 定义2. 出现原因3. 添加依赖4. 使用1&#xff09;创建 Repository 接口2&#xff09;自定义查询方法&#xff08;非必须&#xff09;3&#xff09;创建实体类4&#xff09;调用方法 5. 验证6. 优点7. 缺点8. 详细代码总结 1. 定义 Spring Data JPA 是 Spring 提供…

C# 编写简单二维码条形码工具

C# 二维码条形码工具 该工具简单实现了二维码条形码生成与识别功能&#xff0c;识别方式&#xff1a;通过摄像头实时识别或通过图片文件识别。 using AForge.Genetic; using AForge.Video.DirectShow; using System; using System.Collections.Generic; using System.Component…

实习知识整理6:前后端利用jQuery $.ajax数据传输的四种方式

方式1&#xff1a;前端发送key/value(String字符串)&#xff0c;后台返回文本 前端&#xff1a; <input id"test1" type"button" value"前端发送key/value(String字符串)&#xff0c;后台返回文本"/> $(function() {$("#test1&quo…

YHZ001 Python 简介

配套视频链接: YHZ001 Python 简介 目录 &#x1f649; Python的历史&#x1fab1; Python的作者&#x1f98a; Python 的优缺点&#x1f417; Python 的应用领域&#x1f41e; Python 哲学&#x1f430; Python 解释器 &#x1f649; Python的历史 1989年圣诞节&#xff1a; …

数据智慧:C#中编程实现自定义计算的Excel数据透视表

前言 数据透视表&#xff08;Pivot Table&#xff09;是一种数据分析工具&#xff0c;通常用于对大量数据进行汇总、分析和展示。它可以帮助用户从原始数据中提取关键信息、发现模式和趋势&#xff0c;并以可视化的方式呈现。 在数据透视表中&#xff0c;数据分析师通常希望进…