【深度学习目标检测】十一、基于深度学习的电网绝缘子缺陷识别(python,目标检测,yolov8)

news2025/2/8 7:49:46

YOLOv8是一种物体检测算法,是YOLO系列算法的最新版本。

YOLO(You Only Look Once)是一种实时物体检测算法,其优势在于快速且准确的检测结果。YOLOv8在之前的版本基础上进行了一系列改进和优化,提高了检测速度和准确性。

YOLOv8采用了Darknet-53作为其基础网络架构。Darknet-53是一个53层的卷积神经网络,用于提取图像特征。与传统的卷积神经网络相比,Darknet-53具有更深的网络结构和更多的卷积层,可以更好地捕捉图像中的细节和语义信息。

在YOLOv8中,还使用了一些技术来提高检测性能。首先是使用了多尺度检测。YOLOv8在不同的尺度上检测物体,这样可以更好地处理物体的大小变化和远近距离差异。其次是利用了FPN(Feature Pyramid Network)结构来提取多尺度特征。FPN可以将不同层级的特征图进行融合,使得算法对不同大小的物体都有较好的适应性。

此外,YOLOv8还利用了一种称为CSPDarknet的网络结构来减少计算量。CSPDarknet使用了CSP(Cross Stage Partial)结构,在网络的前向和后向传播过程中进行特征融合,从而减少了网络的参数量和计算量。

在训练阶段,YOLOv8使用了一种称为CutMix的数据增强技术。CutMix将不同图像的一部分进行混合,从而增加了数据的多样性和鲁棒性。

总而言之,YOLOv8是一种快速而准确的物体检测算法,它通过引入Darknet-53网络、多尺度检测、FPN结构、CSPDarknet结构和CutMix数据增强等技术,实现了对不同大小和距离的物体进行快速、准确的检测。

本文介绍了基于Yolov8的电网绝缘子检测模型,包括训练过程和数据准备过程,同时提供了推理的代码。对准备计算机视觉相关的毕业设计的同学有着一定的帮助。

效果如下图:

一、安装YoloV8

yolov8官方文档:主页 - Ultralytics YOLOv8 文档

安装部分参考:官方安装教程

二、数据集准备

电网绝缘子缺陷数据集,只有1个类别,就是绝缘子缺陷。该数据集包含600个图片,其中540个训练集,60个验证集。

示例图片如下:

原始的数据格式为VOC格式,本文提供转换好的yolov8格式数据集,,可以直接放入yolov8中训练,数据集地址:绝缘子缺陷数据集yolov8格式

三、模型训练

1、数据集配置文件

在ultralytics/ultralytics/cfg/datasets目录下添加insulator.yaml,添加以下内容(path修改为自己的路径):

# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO 2017 dataset http://cocodataset.org by Microsoft
# Example usage: yolo train data=coco.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── coco  ← downloads here (20.1 GB)


# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: datasets/insulator/insulator-yolov8  # 更换为自己的路径
train: images/train 
val: images/val  
test: images/test  

# Classes
names:
  # 0: normal
  0: insulator
2、修改模型配置文件

在ultralytics/ultralytics/cfg/models/v8目录下添加yolov8n_insulator.yaml,添加以下内容:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 1  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)

  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)
3、训练模型

使用如下命令训练模型,相关路径更改为自己的路径,建议绝对路径:

yolo detect train project=deploy name=yolov8_insulator exist_ok=True optimizer=auto val=True amp=True epochs=100  imgsz=640 model=ultralytics/ultralytics/cfg/models/v8/yolov8n_insulator.yaml  data=ultralytics/ultralytics/cfg/datasets/insulator.yaml
4、验证模型

使用如下命令验证模型,相关路径根据需要修改:

yolo detect val imgsz=640 model=deploy/yolov8_insulator/weights/best.pt data=ultralytics/ultralytics/cfg/datasets/insulator.yaml

四、推理

训练好了模型,可以使用如下代码实现推理,将权重放到同级目录:

from PIL import Image
from ultralytics import YOLO

# 加载预训练的YOLOv8n模型
model = YOLO('best.pt')

# 在'bus.jpg'上运行推理
image_path = '0606.jpg'
results = model(image_path)  # 结果列表

# 展示结果
for r in results:
    im_array = r.plot()  # 绘制包含预测结果的BGR numpy数组
    im = Image.fromarray(im_array[..., ::-1])  # RGB PIL图像
    im.show()  # 显示图像
    im.save('0606_results.jpg')  # 保存图像

本教程训练好的权重和推理代码、示例代码连接:推理代码和训练好的权重

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1336161.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

408计算机网络错题知识点拾遗

个人向错题相关部分整理,涵盖真题、模拟、课后习题等。 408相关: 408数据结构错题知识点拾遗 408计算机网络错题知识点拾遗 计网复习资料下载整合 已进行资源绑定,相关计网复习资料上方下载。 第一章 计算机网络体系结构 第二章 物理层 第三…

H.266/VVC 关键帧内预测技术

在 VVC 中,帧内预测过程分为三个步骤:首先,从当前 CU 左侧和上方相 邻块获取参考像素,并对获取的参考像素值进行平滑滤波。其次,基于参考像素 预测得到当前 CU 像素值。最后为了提高预测像素值的精度,平滑滤…

【数据库系统概论】第3章-关系数据库标准语言SQL(3)

文章目录 3.5 数据更新3.5.1 插入数据3.5.2 修改数据3.5.3 删除数据 3.6 空值的处理3.7 视图3.7.1 建立视图3.7.2 查询视图3.7.3 更新视图3.7.4 视图的作用 3.5 数据更新 3.5.1 插入数据 注意:插入数据时要满足表或者列的约束条件,否则插入失败&#x…

类加载器及其类加载子系统

类加载器子系统作用 类加载器子系统的作用是负责将字节码文件加载到内存中,并将其转化为能够被虚拟机直接使用的形式。它是Java虚拟机的一部分,具体作用如下: 加载 类加载器负责将类的字节码文件加载到虚拟机的方法区中,以便…

通过自然语言处理增强推荐系统:协同方法

一、介绍 自然语言处理 (NLP) 是人工智能的一个分支,专注于使机器能够以有意义且有用的方式理解、解释和响应人类语言。它包含一系列技术,包括情感分析、语言翻译和聊天机器人。 另一方面,推荐系统(RecSys)是旨在向用户…

elasticsearch 笔记二:搜索DSL 语法(搜索API、Query DSL)

文章目录 一、搜索 API1. 搜索 API 端点地址2. URI Search3. 查询结果说明5. 特殊的查询参数用法6. Request body Search6.1 query 元素定义查询6.2 指定返回哪些内容**6.2.1 source filter 对_source 字段进行选择****6.2.2 stored_fields 来指定返回哪些 stored 字段****6.2.…

【Azure 架构师学习笔记】- Power Platform(1) - 简介

本文属于【Azure 架构师学习笔记】系列。 本文属于【Power Platform】系列。 Power Platform 它是一个SaaS平台,支持和延伸M365, Dynamics 365和Azure甚至其他第三方服务。主要提供低代码,自动化,数据驱动和定制化业务逻辑的服务…

PSINS四元数转换函数rv2q

pins中的关于四元数转换 cquat rv2q(const cvect3* rv) 函数 代码对应的公式,第一个 第二个 其他 理解公式: 四元数的表示,与三角函数之间的关系 ,矢量(x,,y,z) 旋转角度为a, 矢量变…

c# OpenCvSharp 检测(斑点检测、边缘检测、轮廓检测)(五)

在C#中使用OpenCV进行图像处理时,可以使用不同的算法和函数来实现斑点检测、边缘检测和轮廓检测。 斑点检测边缘检测轮廓检测 一、斑点检测(Blob) 斑点检测是指在图像中找到明亮或暗的小区域(通常表示为斑点)&#…

数据结构之<堆>的介绍

1.简介 堆是一种特殊的数据结构,通常用于实现优先队列。堆是一个可以被看作近似完全二叉树的结构,并且具有一些特殊的性质,根据这些性质,堆被分为最大堆(或者大根堆,大顶堆)和最小堆两种。 2.…

Ps:制作“小行星”效果

在 Photoshop 中,制作 360 度全景效果或类似“小行星”效果主要就是使用“极坐标”滤镜。 不过,为了获得更好的效果,常常还需要做一些额外的处理和修饰。 原图(来自网络) 效果图 ◆ ◆ ◆ 一般步骤及说明 1、打开图像…

什么是OAuth2.0

前言 OAuth(Open Authorization)是一个关于授权(authorization)的开放网络标准,允许用户授权第三方应用访问他们存储在另外的服务提供者上的信息,而不需要将用户名和密码提供给第三方移动应用或分享他们数…

【华为机试】2023年真题B卷(python)-分糖果

一、题目 题目描述: 小明从糖果盒中随意抓一把糖果,每次小明会取出一半的糖果分给同学们。 当糖果不能平均分配时,小明可以选择从糖果盒中(假设盒中糖果足够)取出一个糖果或放回一个糖果。 小明最少需要多少次&#xf…

虚拟机服务器中了lockbit2.0/3.0勒索病毒怎么处理,数据恢复应对步骤

网络技术的不断发展也为网络威胁带来了安全隐患,近期,对于许多大型企业来说,许多企业的虚拟机服务器系统遭到了lockbit2.0/3.0勒索病毒攻击,导致企业所有计算机系统瘫痪,无法正常工作,严重影响了企业的正常…

【Vue2+3入门到实战】(4)Vue基础之指令修饰符 、v-bind对样式增强的操作、v-model应用于其他表单元素 详细示例

目录 一、今日学习目标1.指令补充 二、指令修饰符1.什么是指令修饰符?2.按键修饰符3.v-model修饰符4.事件修饰符 三、v-bind对样式控制的增强-操作class1.语法:2.对象语法3.数组语法4.代码练习 四、京东秒杀-tab栏切换导航高亮1.需求:2.准备代…

Java 快速入门

简介 跨平台性:Java 最大的优势之一就是跨平台性,即一份 Java 程序可以在多平台上运行,而无需重写。 简单易学:Java 的语法和面向对象的开发方式非常简单易学。 安全性:Java 对于安全性的处理非常慎重,对…

Power BI 学习

补充 二维表: 二维表就是由行列组成的,知道行号列号就可以确定一个表中的数据,这是二维表的特点。在关系数据库中,存放在数据库中的数据的逻辑结构以二维表为主.在二维表中惟一标识元组的最小属性值称为该表的键或码。二维表中可能有若干个健&#xff…

分别使用OVP-UVP和OFP-UFP算法以及AFD检测算法实现反孤岛检测simulink建模与仿真

目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 4.1 OVP-UVP算法 4.2 OFP-UFP算法 4.3 AFD检测算法 5.完整工程文件 1.课题概述 分别使用OVP-UVP和OFP-UFP算法以及AFD检测算法实现反孤岛检测simulink建模与仿真。 2.系统仿真结果 3.核心程序与模型…

Java基础回顾——JDBC

文章目录 介绍使用JDBC事务JDBC BatchJDBC连接池 介绍 Java为关系数据库定义了一套标准的访问接口:JDBC(Java Database Connectivity) JDBC是Java程序访问数据库的标准接口 好处: 各数据库厂商使用相同的接口,Java…

基于SSM+Vue的教材信息管理系统(Java毕业设计)

点击咨询源码 大家好,我是DeBug,很高兴你能来阅读!作为一名热爱编程的程序员,我希望通过这些教学笔记与大家分享我的编程经验和知识。在这里,我将会结合实际项目经验,分享编程技巧、最佳实践以及解决问题的…