智能优化算法应用:基于蛇优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码

news2025/1/16 5:37:15

智能优化算法应用:基于蛇优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于蛇优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.蛇优化算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用蛇优化算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 ,   d ( n , p ) ≤ R n 0 ,   e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f   d ( n o d e i , p ) ≤ r 0 ,   e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.蛇优化算法

蛇优化算法原理请参考:https://blog.csdn.net/u011835903/article/details/124438414
蛇优化算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径


蛇优化算法参数如下:

%% 设定蛇优化优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明蛇优化算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1331705.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于python的excel检查和读写软件

软件版本:python3.6 窗口和界面gui代码: class mygui:def _init_(self):passdef run(self):root Tkinter.Tk()root.title(ExcelRun)max_w, max_h root.maxsize()root.geometry(f500x500{int((max_w - 500) / 2)}{int((max_h - 300) / 2)}) # 居中显示…

C语言易错知识点九(指针(part three))

❀❀❀ 文章由不准备秃的大伟原创 ❀❀❀ ♪♪♪ 若有转载,请联系博主哦~ ♪♪♪ ❤❤❤ 致力学好编程的宝藏博主,代码兴国!❤❤❤ 许久不见,甚是想念,本大忙人已经很久没有更新博客了,我想大概我的粉丝们早…

使用ArcMap对工厂选址

文章目录 题目流程1,添加河流数据和高程数据2,对河流数据进行选取3,对高程数据进行选取并划定工厂选址范围3,根据工厂选址要求,获得整体的数据 结果 题目 实验名称:工厂选址 实验目的及要求: 根…

BATDK | 社招一年收割大厂算法offer

面试锦囊之面经分享系列,持续更新中 欢迎后台回复『面试』加入讨论组交流噢 没凑齐battmd是因为头条没面,美团面挂了。4/5的胜率;标题党了,T其实面的是搜狗,但是被腾讯收购,入职流程也走了腾讯的&#xf…

【低照度图像增强系列(1)】传统方法(直方图、图像变换)算法详解与代码实现

前言 ☀️ 在低照度场景下进行目标检测任务,常存在图像RGB特征信息少、提取特征困难、目标识别和定位精度低等问题,给检测带来一定的难度。 🌻使用图像增强模块对原始图像进行画质提升,恢复各类图像信息,再使用目标检…

Kafka日志

位置 server.properties配置文件中通过log.dir指定日志存储目录 log.dir/{topic}-{partition} 核心文件 .log 存储消息的日志文件,固定大小为1G,写满后会新增一个文件,文件名表示当前日志文件记录的第一条消息的偏移量。 .index 以偏移…

Vue+ElementUI+nodejs学生宿舍报修管理系统68ozj

本站是一个B/S模式系统,采用vue框架,MYSQL数据库设计开发,充分保证系统的稳定性。系统具有界面清晰、操作简单,功能齐全的特点,使得学生宿舍信息管理系统管理工作系统化、规范化。本系统的使用使管理人员从繁重的工作中…

2023的AI工具集合,google和claude被禁用解决和edge的copilot

一、前言 AI工具集合 首先,OpenAI的ChatGPT以其深度学习模型和强大的语言处理能力引领了AI聊天机器人的潮流。自2022年11月30日上线以来,它创下了100万用户的注册记录,并被广泛应用于全球财富500强公司。为了实现盈利,OpenAI发布…

git入门指南:新手快速上手git(Linux环境如何使用git)

目录 前言 1. 什么是git? 2. git版本控制器 3. git在Linux中的使用 安装git 4. git三板斧 第一招:add 第二招:commit 第三招:push 5. 执行状态 6. 删除 总结 前言 Linux的基本开发工具介绍完毕,接下来介绍一…

Go 泛型发展史与基本介绍

Go 泛型发展史与基本介绍 Go 1.18版本增加了对泛型的支持,泛型也是自 Go 语言开源以来所做的最大改变。 文章目录 Go 泛型发展史与基本介绍一、为什么要加入泛型?二、什么是泛型三、泛型的来源四、为什么需要泛型五、Go 泛型设计的简史六、泛型语法6.1 …

采用SpringBoot框架+原生HTML、JS前后端分离模式开发和部署的电子病历编辑器源码(电子病历评级4级)

概述: 电子病历是指医务人员在医疗活动过程中,使用医疗机构信息系统生成的文字、符号、图表、图形、数据、影像等数字化信息,并能实现存储、管理、传输和重现的医疗记录,是病历的一种记录形式。 医院通过电子病历以电子化方式记录患者就诊的信息,包括&…

神经网络:机器学习基础

【一】什么是模型的偏差和方差? 误差(Error) 偏差(Bias) 方差(Variance) 噪声(Noise),一般地,我们把机器学习模型的预测输出与样本的真实label…

智能优化算法应用:基于材料生成算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于材料生成算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于材料生成算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.材料生成算法4.实验参数设定5.算法结果6.…

Netty RPC 实现(二)

Netty RPC 实现 概念 RPC,即 Remote Procedure Call(远程过程调用),调用远程计算机上的服务,就像调用本地服务一样。RPC 可以很好的解耦系统,如 WebService 就是一种基于 Http 协议的 RPC。这个 RPC 整体…

生物系统学中的进化树构建和分析R工具包V.PhyloMaker2的介绍和详细使用

V.PhyloMaker2是一个R语言的工具包,专门用于构建和分析生物系统学中的进化树(也称为系统发育树或phylogenetic tree)。以下是对V.PhyloMaker2的一些基本介绍和使用说明: 论文介绍:V.PhyloMaker2: An updated and enla…

nodejs+vue+ElementUi洗衣店订单管理系统4691l

衣服但是找订单的时间太长,体验非常的差。而且对于店家这也很头疼,麻烦的查找订单的方式,让他总是重复着繁琐的步骤,记录的时候也很容易出问题,容易把衣服弄错,再然后就是对于收来的衣服也很麻烦&#xff0…

互联网+建筑工地源码,基于微服务+Java+Spring Cloud +Vue+UniApp开发

一、智慧工地概念 智慧工地就是互联网建筑工地,是将互联网的理念和技术引入建筑工地,然后以物联网、移动互联网技术为基础,充分应用BIM、大数据、人工智能、移动通讯、云计算、物联网等信息技术,通过人机交互、感知、决策、执行和…

指南:在App Store Connect上编辑多个用户的访问权限

作为一名编程新手,在App Store Connect中管理用户权限可能初听起来有些复杂,但实际上它是一个相对直接的过程。这里是一个步骤清晰的指南来帮助您在App Store Connect上编辑多个用户的访问权限。 App Store Connect 简介 在开始之前,让我们…

CycleGAN-两个领域非匹配图像的相互转换

1. CycleGAN的简介 pix2pix可以很好地处理匹配数据集图像转换,但是在很多情况下匹配数据集是没有的或者是很难收集到的,但是我们可以很容易的得到两个领域大量的非匹配数据。2017年有两篇非常相似的论文CycleGAN和DiscoGAN,提出了一种解决非匹…

Dockerfile ENTRYPOINT 执行shell脚本后自动退出

在Dockerfile文件中,最后一步是在入口处启动服务或执行一些部署脚本,例如: # 运行启动脚本 ENTRYPOINT ["/bin/bash","/home/deploy/run_admin_server.sh"]脚本是这样写的: rm -f /home/workspace/*.jar cd…