生物系统学中的进化树构建和分析R工具包V.PhyloMaker2的介绍和详细使用

news2025/1/16 8:11:01

V.PhyloMaker2是一个R语言的工具包,专门用于构建和分析生物系统学中的进化树(也称为系统发育树或phylogenetic tree)。以下是对V.PhyloMaker2的一些基本介绍和使用说明:

论文介绍:V.PhyloMaker2: An updated and enlarged R package that can generate very large phylogenies for vascular plants - ScienceDirect

 github仓库代码:jinyizju/V.PhyloMaker2: This package (an updated version of 'V.PhyloMaker') can generate a phylogenetic tree for vascular plants based on three different botanical nomenclature systems. (github.com)

介绍:

V.PhyloMaker2提供了一系列的函数和方法,帮助用户处理和分析分子序列数据,包括但不限于:

  1. 数据预处理:对分子序列数据进行质量控制、格式转换和多重比对。
  2. 进化树构建:支持多种流行的进化树构建方法,如最大似然法(Maximum Likelihood)、贝叶斯推断法(Bayesian Inference)等。
  3. 进化树优化:通过搜索最优的树形结构和参数组合来提高进化树的准确性。
  4. 进化树可视化:提供丰富的图形选项来定制和美化进化树的显示。
  5. 树形数据分析:包括节点支持度评估、分支长度分析、祖先状态重建等。

详细使用:

由于V.PhyloMaker2的具体使用会涉及到具体的代码操作和数据分析过程,以下是一些基本的使用步骤:

  1. 安装V.PhyloMaker2: 在R环境中,使用install.packages("V.PhyloMaker2")命令来安装这个包。

    #BioManager安装
    if (!requireNamespace("BiocManager", quietly = TRUE))
        install.packages("BiocManager")
    BiocManager::install("V.PhyloMaker2")
    
    #github 安装
    install.packages("devtools")
    
    library(devtools)
    install_github("JinYongJiang/V.PhyloMaker")
    
    
  2. 加载V.PhyloMaker2: 安装后,使用library(V.PhyloMaker2)命令来加载这个包。

  3. 数据预处理: 根据你的数据类型和格式,使用相应的函数进行数据导入和预处理。例如,如果你的数据是fasta格式的序列文件,可以使用read.FASTA()函数将其读入R。

    # 导入数据:首先,你需要将你的序列数据导入到R中。这通常是以fasta或 nexus格式存储的。
    library(ape)
    sequences <- read.fasta("your_file.fasta")
    
    #数据清理:检查并处理缺失数据、异质性(例如,核苷酸替换)、和错误。
    # 查看是否存在任何缺失数据
    sum(is.na(sequences))
    
    # 如果存在缺失数据,可以考虑删除含有缺失数据的行
    sequences <- sequences[!apply(sequences, 1, function(x) any(is.na(x))), ]
    
    # 或者用某种方法填补缺失数据(例如,通过平均或中位数)
    sequences[is.na(sequences)] <- median(sequences, na.rm = TRUE)
    
    
  4. 多重比对: 使用muscle()或其他比对函数对序列进行比对。

    #序列对齐:对于DNA或蛋白质序列,你需要进行序列对齐。
    aligned_sequences <- muscle(sequences)
    
    #转换为距离矩阵:将对齐后的序列转换为距离矩阵,这通常是后续构建系统发育树的步骤。
    dist_matrix <- dist.dna(aligned_sequences)
  5. 进化树构建: 使用build.tree()或其他相关函数,根据你的数据和研究目标选择合适的树构建方法。

    # 假设您已经有了一个包含序列数据的数据框df,并且列名是物种名称
    # df <- data.frame(sequence1, sequence2, ..., sequenceN)
    # 或前面的 data_matrix
    
    # 使用build.tree()函数构建进化树
    # 这里的参数是假设的,实际参数需要参考V.PhyloMaker包的文档
    tree <- build.tree(data = df(或data_matrix), 
                       seq_type = "dna",   # 数据类型,可以是"dna"、"rna"或"protein"
                       method = "neighbor_joining",  # 构建树的方法,例如"neighbor_joining"(邻接法)或"maximum_likelihood"(最大似然法)
                       distance_method = "kimura")  # 距离计算方法,例如"kimura"(金氏距离)
  6. 进化树优化: 对构建的初步树进行优化,例如使用optimize.tree()函数。

    # 假设你已经使用 build.tree() 建立了一个决策树模型
    # 假设 tree_model 是你建立的模型
    
    # 查看建立的树的概况
    summary(tree_model)
    
    # 根据交叉验证选择最佳的剪枝参数
    prune_model <- prune.tree(tree_model)
    
    # 查看剪枝后的树的概况
    summary(prune_model)
    
    # 如果需要,你可以根据需要进一步调整剪枝参数
    
  7. 进化树可视化: 使用plot.tree()函数将进化树可视化,并通过调整各种参数来定制图形。

    # 可视化决策树并调整参数
    plot(tree_model, type = "uniform", fsize = 0.8, cex = 0.8, label = "all")
    
    
    # 添加各种参数以定制图形
    plot(my_tree,
         type = "fan",       # 树的类型,可以是"phylogram"(分支长度代表进化时间)、"cladogram"(所有分支长度相等)或"fan"(扇形树)
         show.tip.label = TRUE,  # 是否显示叶节点的标签
         edge.width = 2,      # 分支线的宽度
         edge.color = "black",   # 分支线的颜色
         tip.color = "blue",    # 叶节点的颜色
         no.margin = TRUE,    # 是否移除图形边框
         cex = 0.8,           # 标签的字体大小
         font = 2,            # 标签的字体类型
         main = "My Evolutionary Tree",  # 图形的标题
         sub = "Customized with plot() function")  # 图形的副标题
  8. 树形数据分析: 根据你的研究问题,选择相应的函数进行树形数据分析,如节点支持度评估、分支长度分析等。

    # 安装并加载相关包
    install.packages("ape")
    install.packages("phytools")
    library(ape)
    library(phytools)
    
    # 假设 tree 是你的树形数据
    
    # 计算节点支持度
    bootstrap_tree <- bootstrap.phylo(tree, FUN = your_function_for_tree, B = 100)  # your_function_for_tree 是用于估计树的函数
    
    # 生成共识树
    consensus_tree <- consensus(bootstrap_tree)
    
    # 计算树的相似性矩阵
    coph_matrix <- cophenetic(tree)
    
    # 绘制共演化历史图
    cophyloplot(tree1, tree2)
    

补充分析示例:

树形数据分析可以使用R中的多个包来实现,例如apephangornggtree等。下面是一个简单的示例代码,使用了ape包来进行树形数据分析。

首先,我们需要安装并加载ape包:

install.packages("ape")
library(ape)

接下来,我们可以根据需求读取树形数据。假设我们有一棵简单的进化树,包含5个物种,并且我们想要计算节点的支持度值:

# 创建一个简单的进化树
tree <- rtree(5)

# 计算节点的支持度值
supports <- node.depths(tree)

接下来,我们可以绘制树形图,并标记节点的支持度值:

# 绘制树形图
plot(tree, show.node.label = TRUE)

# 标记节点支持度值
nodelabels(round(supports, 2), bg = "white")

要分析分支长度,我们可以使用cophenetic.phylo()函数计算树的协同形态矩阵,然后使用plot()函数绘制分支长度图:

# 计算协同形态矩阵
cophenetic_matrix <- cophenetic(tree)

# 绘制分支长度图
plot(cophenetic_matrix, main = "Branch Lengths", xlab = "Pairwise Distances")

相似工具包S.PhyloMaker

S.PhyloMaker的介绍和使用看这里:种系进化树分析和构建工具R工具包S.phyloMaker的介绍和详细使用方法-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1331685.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

nodejs+vue+ElementUi洗衣店订单管理系统4691l

衣服但是找订单的时间太长&#xff0c;体验非常的差。而且对于店家这也很头疼&#xff0c;麻烦的查找订单的方式&#xff0c;让他总是重复着繁琐的步骤&#xff0c;记录的时候也很容易出问题&#xff0c;容易把衣服弄错&#xff0c;再然后就是对于收来的衣服也很麻烦&#xff0…

互联网+建筑工地源码,基于微服务+Java+Spring Cloud +Vue+UniApp开发

一、智慧工地概念 智慧工地就是互联网建筑工地&#xff0c;是将互联网的理念和技术引入建筑工地&#xff0c;然后以物联网、移动互联网技术为基础&#xff0c;充分应用BIM、大数据、人工智能、移动通讯、云计算、物联网等信息技术&#xff0c;通过人机交互、感知、决策、执行和…

指南:在App Store Connect上编辑多个用户的访问权限

作为一名编程新手&#xff0c;在App Store Connect中管理用户权限可能初听起来有些复杂&#xff0c;但实际上它是一个相对直接的过程。这里是一个步骤清晰的指南来帮助您在App Store Connect上编辑多个用户的访问权限。 App Store Connect 简介 在开始之前&#xff0c;让我们…

CycleGAN-两个领域非匹配图像的相互转换

1. CycleGAN的简介 pix2pix可以很好地处理匹配数据集图像转换&#xff0c;但是在很多情况下匹配数据集是没有的或者是很难收集到的&#xff0c;但是我们可以很容易的得到两个领域大量的非匹配数据。2017年有两篇非常相似的论文CycleGAN和DiscoGAN&#xff0c;提出了一种解决非匹…

Dockerfile ENTRYPOINT 执行shell脚本后自动退出

在Dockerfile文件中&#xff0c;最后一步是在入口处启动服务或执行一些部署脚本&#xff0c;例如&#xff1a; # 运行启动脚本 ENTRYPOINT ["/bin/bash","/home/deploy/run_admin_server.sh"]脚本是这样写的&#xff1a; rm -f /home/workspace/*.jar cd…

物理层——“计算机网络”

各位CSDN的uu们你们好呀&#xff0c;仍然是计算机网络的一些细小的知识点啦&#xff0c;下面&#xff0c;让我们进入计算机网络物理层的世界吧&#xff01;&#xff01;&#xff01; 数据通信基础知识 编码与调制 传输媒体 信道复用技术 数字传输系统 接入技术 数据通信基…

CSS期末知识复习, 重要知识点摘录

CSS期末知识复习&#xff0c;重要知识点摘录 CSS的创建 外部样式表 内部样式表 内联样式 优先级关系 背景设置 1.颜色 2.背景图像 3.背景是否平铺 4.简写 具体属性参考&#xff0c;不多赘述了&#xff0c;毕竟每个人薄弱点不一样 background菜鸟教程 CSS文本 1.颜色 2.对齐方…

由正规表达式构造DFA,以及DFA的相关化简

目录 1.由正规式到DFA 首先讲如何从正规式到NFA 如何从NFA到DFA 2.DFA的化简 3.DFA和NFA的区别 1.由正规式到DFA 正规式--->NFA---->DFA 首先讲如何从正规式到NFA 转换规则: 例题1&#xff1a;这里圆圈里面的命名是随意的&#xff0c;只要能区别开就可以了 如何…

<HarmonyOS第一课>运行Hello World

下载与安装DevEco Studio 在HarmonyOS应用开发学习之前&#xff0c;需要进行一些准备工作&#xff0c;首先需要完成开发工具DevEco Studio的下载与安装以及环境配置。 进入DevEco Studio下载官网&#xff0c;单击“立即下载”进入下载页面。 DevEco Studio提供了Windows版本和…

阿里云 ARMS 应用监控重磅支持 Java 21

作者&#xff1a;牧思 & 山猎 前言 今年的 9 月 19 日&#xff0c;作为最新的 LTS (Long Term Support) Java 版本&#xff0c;Java 21 正式 GA&#xff0c;带来了不少重量级的更新&#xff0c;详情请参考 The Arrival of Java 21 [ 1] 。虽然目前 Java 11 和 Java 17 都…

九、W5100S/W5500+RP2040之MicroPython开发<HTTPOneNET示例>

文章目录 1. 前言2. 平台操作流程2.1 创建设备2.2 创建数据流模板 3. WIZnet以太网芯片4. 示例讲解以及使用4.1 程序流程图4.2 测试准备4.3 连接方式4.4 相关代码4.5 烧录验证 5. 注意事项6. 相关链接 1. 前言 在这个智能硬件和物联网时代&#xff0c;MicroPython和树莓派PICO正…

软件工程中关键的图-----知识点总结

目录 1.数据流图 2.变换型设计和事务型设计 3.程序流程图 4.NS图和PAD图&#xff1a; 5.UML图 1.用例图 2.类图 3.顺序图 4.协作图 本文为个人复习资料&#xff0c;包含个人复习思路&#xff0c;多引用&#xff0c;也想和大家分享一下&#xff0c;希望大家不要介意~ …

Android可折叠设备完全指南:展开未来

Android可折叠设备完全指南&#xff1a;展开未来 探索如何使用Android Jetpack组件折叠和展开设备。 近年来&#xff0c;科技界见证了可折叠设备的革命性趋势。这些设备融合了便携性和功能性的创新特点&#xff0c;使用户能够在不同的形态之间无缝切换。在本博客中&#xff0c…

GitHub、Gitee、Gitlab共用一个SSH密钥配置

目录 1. 说明2. 生成ssh2-1. 设置全局邮箱和用户名2-2. 生成全局ssh 3. Github、Gitee配置ssh3-1. Github配置3-2. Gitee配置 1. 说明 由于我的Github、Gitee、Gitlab用的邮箱不同&#xff0c;向不同的平台提交代码时都需要验证密码&#xff0c;非常麻烦所以配置了一个共用的S…

深度学习 | 基础卷积神经网络

卷积神经网络是人脸识别、自动驾驶汽车等大多数计算机视觉应用的支柱。可以认为是一种特殊的神经网络架构&#xff0c;其中基本的矩阵乘法运算被卷积运算取代&#xff0c;专门处理具有网格状拓扑结构的数据。 1、全连接层的问题 1.1、全连接层的问题 “全连接层”的特点是每个…

VSCode软件与SCL编程

原创 NingChao NCLib 博途工控人平时在哪里技术交流博途工控人社群 VSCode简称VSC&#xff0c;是Visual studio code的缩写&#xff0c;是由微软开发的跨平台的轻量级编辑器&#xff0c;支持几乎所有主流的开发语言的语法高亮、代码智能补全、插件扩展、代码对比等&#xff0c…

【SPI和API有什么区别】

✅什么是SPI&#xff0c;和API有什么区别 ✅典型解析&#x1f7e2;拓展知识仓&#x1f7e2;如何定义一个SPI&#x1f7e2;SPI的实现原理 ✅SPI的应用场景SpringDubbo ✅典型解析 Java 中区分 API和 SPI&#xff0c;通俗的进: API和 SPI 都是相对的概念&#xff0c;他们的差别只…

九:爬虫-MongoDB基础

MongoDB介绍 MongoDB是一个介于关系数据库和非关系数据库之间的产品&#xff0c;是非关系数据库当中功能最丰富&#xff0c;最像关系数据库的。它支持的数据结构非常松散&#xff0c;因此可以存储比较复杂的数据类型。Mongo最大的特点是它支持的查询语言非常强大&#xff0c;其…

Pytest测试中的临时目录与文件管理!

在Pytest测试框架中&#xff0c;使用临时目录与文件是一种有效的测试管理方式&#xff0c;它能够确保测试的独立性和可重复性。在本文中&#xff0c;我们将深入探讨如何在Pytest中利用临时目录与文件进行测试&#xff0c;并通过案例演示实际应用。 为什么需要临时目录与文件&am…

安卓CA证书安装导入失败在设置中安装CA证书

环境&#xff1a;一般手机涉及到TLS解密及逆向等必备操作是需要类似抓包一类的应用&#xff0c;要想获取到指定应用的完整解密数据包则至少需要Root或配合授权的CA 证书简单来说就是需要进行解密授权 CA证书的通用格式一般有 点击直达 根证书&#xff08;PEM 格式&#xff09…