智能优化算法应用:基于材料生成算法3D无线传感器网络(WSN)覆盖优化 - 附代码

news2025/1/16 7:45:18

智能优化算法应用:基于材料生成算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于材料生成算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.材料生成算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用材料生成算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 ,   d ( n , p ) ≤ R n 0 ,   e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f   d ( n o d e i , p ) ≤ r 0 ,   e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.材料生成算法

材料生成算法原理请参考:https://blog.csdn.net/u011835903/article/details/124221652
材料生成算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径


材料生成算法参数如下:

%% 设定材料生成优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明材料生成算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1331687.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Netty RPC 实现(二)

Netty RPC 实现 概念 RPC,即 Remote Procedure Call(远程过程调用),调用远程计算机上的服务,就像调用本地服务一样。RPC 可以很好的解耦系统,如 WebService 就是一种基于 Http 协议的 RPC。这个 RPC 整体…

生物系统学中的进化树构建和分析R工具包V.PhyloMaker2的介绍和详细使用

V.PhyloMaker2是一个R语言的工具包,专门用于构建和分析生物系统学中的进化树(也称为系统发育树或phylogenetic tree)。以下是对V.PhyloMaker2的一些基本介绍和使用说明: 论文介绍:V.PhyloMaker2: An updated and enla…

nodejs+vue+ElementUi洗衣店订单管理系统4691l

衣服但是找订单的时间太长,体验非常的差。而且对于店家这也很头疼,麻烦的查找订单的方式,让他总是重复着繁琐的步骤,记录的时候也很容易出问题,容易把衣服弄错,再然后就是对于收来的衣服也很麻烦&#xff0…

互联网+建筑工地源码,基于微服务+Java+Spring Cloud +Vue+UniApp开发

一、智慧工地概念 智慧工地就是互联网建筑工地,是将互联网的理念和技术引入建筑工地,然后以物联网、移动互联网技术为基础,充分应用BIM、大数据、人工智能、移动通讯、云计算、物联网等信息技术,通过人机交互、感知、决策、执行和…

指南:在App Store Connect上编辑多个用户的访问权限

作为一名编程新手,在App Store Connect中管理用户权限可能初听起来有些复杂,但实际上它是一个相对直接的过程。这里是一个步骤清晰的指南来帮助您在App Store Connect上编辑多个用户的访问权限。 App Store Connect 简介 在开始之前,让我们…

CycleGAN-两个领域非匹配图像的相互转换

1. CycleGAN的简介 pix2pix可以很好地处理匹配数据集图像转换,但是在很多情况下匹配数据集是没有的或者是很难收集到的,但是我们可以很容易的得到两个领域大量的非匹配数据。2017年有两篇非常相似的论文CycleGAN和DiscoGAN,提出了一种解决非匹…

Dockerfile ENTRYPOINT 执行shell脚本后自动退出

在Dockerfile文件中,最后一步是在入口处启动服务或执行一些部署脚本,例如: # 运行启动脚本 ENTRYPOINT ["/bin/bash","/home/deploy/run_admin_server.sh"]脚本是这样写的: rm -f /home/workspace/*.jar cd…

物理层——“计算机网络”

各位CSDN的uu们你们好呀,仍然是计算机网络的一些细小的知识点啦,下面,让我们进入计算机网络物理层的世界吧!!! 数据通信基础知识 编码与调制 传输媒体 信道复用技术 数字传输系统 接入技术 数据通信基…

CSS期末知识复习, 重要知识点摘录

CSS期末知识复习,重要知识点摘录 CSS的创建 外部样式表 内部样式表 内联样式 优先级关系 背景设置 1.颜色 2.背景图像 3.背景是否平铺 4.简写 具体属性参考,不多赘述了,毕竟每个人薄弱点不一样 background菜鸟教程 CSS文本 1.颜色 2.对齐方…

由正规表达式构造DFA,以及DFA的相关化简

目录 1.由正规式到DFA 首先讲如何从正规式到NFA 如何从NFA到DFA 2.DFA的化简 3.DFA和NFA的区别 1.由正规式到DFA 正规式--->NFA---->DFA 首先讲如何从正规式到NFA 转换规则: 例题1:这里圆圈里面的命名是随意的,只要能区别开就可以了 如何…

<HarmonyOS第一课>运行Hello World

下载与安装DevEco Studio 在HarmonyOS应用开发学习之前,需要进行一些准备工作,首先需要完成开发工具DevEco Studio的下载与安装以及环境配置。 进入DevEco Studio下载官网,单击“立即下载”进入下载页面。 DevEco Studio提供了Windows版本和…

阿里云 ARMS 应用监控重磅支持 Java 21

作者:牧思 & 山猎 前言 今年的 9 月 19 日,作为最新的 LTS (Long Term Support) Java 版本,Java 21 正式 GA,带来了不少重量级的更新,详情请参考 The Arrival of Java 21 [ 1] 。虽然目前 Java 11 和 Java 17 都…

九、W5100S/W5500+RP2040之MicroPython开发<HTTPOneNET示例>

文章目录 1. 前言2. 平台操作流程2.1 创建设备2.2 创建数据流模板 3. WIZnet以太网芯片4. 示例讲解以及使用4.1 程序流程图4.2 测试准备4.3 连接方式4.4 相关代码4.5 烧录验证 5. 注意事项6. 相关链接 1. 前言 在这个智能硬件和物联网时代,MicroPython和树莓派PICO正…

软件工程中关键的图-----知识点总结

目录 1.数据流图 2.变换型设计和事务型设计 3.程序流程图 4.NS图和PAD图: 5.UML图 1.用例图 2.类图 3.顺序图 4.协作图 本文为个人复习资料,包含个人复习思路,多引用,也想和大家分享一下,希望大家不要介意~ …

Android可折叠设备完全指南:展开未来

Android可折叠设备完全指南:展开未来 探索如何使用Android Jetpack组件折叠和展开设备。 近年来,科技界见证了可折叠设备的革命性趋势。这些设备融合了便携性和功能性的创新特点,使用户能够在不同的形态之间无缝切换。在本博客中&#xff0c…

GitHub、Gitee、Gitlab共用一个SSH密钥配置

目录 1. 说明2. 生成ssh2-1. 设置全局邮箱和用户名2-2. 生成全局ssh 3. Github、Gitee配置ssh3-1. Github配置3-2. Gitee配置 1. 说明 由于我的Github、Gitee、Gitlab用的邮箱不同,向不同的平台提交代码时都需要验证密码,非常麻烦所以配置了一个共用的S…

深度学习 | 基础卷积神经网络

卷积神经网络是人脸识别、自动驾驶汽车等大多数计算机视觉应用的支柱。可以认为是一种特殊的神经网络架构,其中基本的矩阵乘法运算被卷积运算取代,专门处理具有网格状拓扑结构的数据。 1、全连接层的问题 1.1、全连接层的问题 “全连接层”的特点是每个…

VSCode软件与SCL编程

原创 NingChao NCLib 博途工控人平时在哪里技术交流博途工控人社群 VSCode简称VSC,是Visual studio code的缩写,是由微软开发的跨平台的轻量级编辑器,支持几乎所有主流的开发语言的语法高亮、代码智能补全、插件扩展、代码对比等&#xff0c…

【SPI和API有什么区别】

✅什么是SPI,和API有什么区别 ✅典型解析🟢拓展知识仓🟢如何定义一个SPI🟢SPI的实现原理 ✅SPI的应用场景SpringDubbo ✅典型解析 Java 中区分 API和 SPI,通俗的进: API和 SPI 都是相对的概念,他们的差别只…

九:爬虫-MongoDB基础

MongoDB介绍 MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。它支持的数据结构非常松散,因此可以存储比较复杂的数据类型。Mongo最大的特点是它支持的查询语言非常强大,其…