基于YOLOv8的草莓病害检测,加入EMA注意力和GPFN提升病害检测能力

news2024/11/14 20:27:26

💡💡💡本文摘要:基于YOLOv8的草莓病害检测,加入EMA注意力和GPFN性能分别从mAP0.5从原始的0.815提升至0.818和0.831

1.YOLOv8介绍

         Ultralytics YOLOv8是Ultralytics公司开发的YOLO目标检测和图像分割模型的最新版本。YOLOv8是一种尖端的、最先进的(SOTA)模型,它建立在先前YOLO成功基础上,并引入了新功能和改进,以进一步提升性能和灵活性。它可以在大型数据集上进行训练,并且能够在各种硬件平台上运行,从CPU到GPU。

具体改进如下:

  1. Backbone:使用的依旧是CSP的思想,不过YOLOv5中的C3模块被替换成了C2f模块,实现了进一步的轻量化,同时YOLOv8依旧使用了YOLOv5等架构中使用的SPPF模块;

  2. PAN-FPN:毫无疑问YOLOv8依旧使用了PAN的思想,不过通过对比YOLOv5与YOLOv8的结构图可以看到,YOLOv8将YOLOv5中PAN-FPN上采样阶段中的卷积结构删除了,同时也将C3模块替换为了C2f模块;

  3. Decoupled-Head:是不是嗅到了不一样的味道?是的,YOLOv8走向了Decoupled-Head;

  4. Anchor-Free:YOLOv8抛弃了以往的Anchor-Base,使用了Anchor-Free的思想;

  5. 损失函数:YOLOv8使用VFL Loss作为分类损失,使用DFL Loss+CIOU Loss作为分类损失;

  6. 样本匹配:YOLOv8抛弃了以往的IOU匹配或者单边比例的分配方式,而是使用了Task-Aligned Assigner匹配方式

框架图提供见链接:Brief summary of YOLOv8 model structure · Issue #189 · ultralytics/ultralytics · GitHub

2.草莓病害数据集介绍

数据集大小一共1450张,类别如下

names: ['Angular Leafspot', 'Anthracnose Fruit Rot', 'Blossom Blight', 'Gray Mold', 'Leaf Spot', 'Powdery Mildew Fruit']

2.1数据集划分

通过split_train_val.py得到trainval.txt、val.txt、test.txt  

# coding:utf-8
 
import os
import random
import argparse
 
parser = argparse.ArgumentParser()
#xml文件的地址,根据自己的数据进行修改 xml一般存放在Annotations下
parser.add_argument('--xml_path', default='Annotations', type=str, help='input xml label path')
#数据集的划分,地址选择自己数据下的ImageSets/Main
parser.add_argument('--txt_path', default='ImageSets/Main', type=str, help='output txt label path')
opt = parser.parse_args()
 
trainval_percent = 0.9
train_percent = 0.7
xmlfilepath = opt.xml_path
txtsavepath = opt.txt_path
total_xml = os.listdir(xmlfilepath)
if not os.path.exists(txtsavepath):
    os.makedirs(txtsavepath)
 
num = len(total_xml)
list_index = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list_index, tv)
train = random.sample(trainval, tr)
 
file_trainval = open(txtsavepath + '/trainval.txt', 'w')
file_test = open(txtsavepath + '/test.txt', 'w')
file_train = open(txtsavepath + '/train.txt', 'w')
file_val = open(txtsavepath + '/val.txt', 'w')
 
for i in list_index:
    name = total_xml[i][:-4] + '\n'
    if i in trainval:
        file_trainval.write(name)
        if i in train:
            file_train.write(name)
        else:
            file_val.write(name)
    else:
        file_test.write(name)
 
file_trainval.close()
file_train.close()
file_val.close()
file_test.close()

 2.2 通过voc_label.py得到适合yolov8训练需要的

# -*- coding: utf-8 -*-
import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
sets = ['train','val','test']
classes = ['Angular Leafspot', 'Anthracnose Fruit Rot', 'Blossom Blight', 'Gray Mold', 'Leaf Spot', 'Powdery Mildew Fruit']

def convert(size, box):
    dw = 1. / size[0]
    dh = 1. / size[1]
    x = (box[0] + box[1]) / 2.0
    y = (box[2] + box[3]) / 2.0
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return (x, y, w, h)
def convert_annotation(image_id):
    in_file = open('Annotations/%s.xml' % (image_id))
    out_file = open('labels/%s.txt' % (image_id), 'w')
    tree = ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)
    for obj in root.iter('object'):
        difficult = obj.find('difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult) == 1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        bb = convert((w, h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
wd = getcwd()
print(wd)
for image_set in sets:
    if not os.path.exists('labels/'):
        os.makedirs('labels/')
    image_ids = open('ImageSets/Main/%s.txt' % (image_set)).read().strip().split()
    list_file = open('%s.txt' % (image_set), 'w')
    for image_id in image_ids:
        list_file.write('images/%s.jpg\n' % (image_id))
        convert_annotation(image_id)
    list_file.close()

3.训练结果分析

F1_curve.png:F1分数与置信度(x轴)之间的关系。F1分数是分类的一个衡量标准,是精确率和召回率的调和平均函数,介于0,1之间。越大越好。

TP:真实为真,预测为真;

FN:真实为真,预测为假;

FP:真实为假,预测为真;

TN:真实为假,预测为假;

精确率(precision)=TP/(TP+FP)

召回率(Recall)=TP/(TP+FN)

F1=2*(精确率*召回率)/(精确率+召回率)

 PR_curve.png :PR曲线中的P代表的是precision(精准率)R代表的是recall(召回率),其代表的是精准率与召回率的关系。

 

4.优化创新

4.1加入EMA注意力机制

 并行子结构帮助网络避免更多的顺序处理和大深度。给定上述并行处理策略,我们在EMA模块中采用它。EMA的整体结构如图3 (b)所示。在本节中,我们将讨论EMA如何在卷积操作中不进行通道降维的情况下学习有效的通道描述,并为高级特征图产生更好的像素级注意力。具体来说,我们只从CA模块中挑选出1x1卷积的共享组件,在我们的EMA中将其命名为1x1分支。为了聚合多尺度空间结构信息,将3x3内核与1x1分支并行放置以实现快速响应,我们将其命名为3x3分支。考虑到特征分组和多尺度结构,有效地建立短期和长程依赖有利于获得更好的性能。

Yolov8改进---注意力机制:ICASSP2023 EMA基于跨空间学习的高效多尺度注意力、效果优于ECA、CBAM、CA | 小目标涨点明显-CSDN博客

mAP0.5从原始的0.815提升至0.818 

4.2 加入GPFN

  FPN旨在对CNN骨干网络提取的不同分辨率的多尺度特征进行融合。上图给出了FPN的进化,从最初的FPN到PANet再到BiFPN。我们注意到:这些FPN架构仅聚焦于特征融合,缺少了块内连接。因此,我们设计了一种新的路径融合GFPN:包含跳层与跨尺度连接,见上图d。

Yolov8改进:小目标到大目标一网打尽,轻骨干重Neck的轻量级目标检测器GiraffeDet-CSDN博客

实验结果:

mAP0.5从原始的0.815提升至0.831

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1324906.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

TensorFlow(2):Windows安装TensorFlow

1 安装python环境 这一步请自行安装,这边不做介绍。 2 安装anaconda 下载路径:Index of /,用户自行选择自己的需要的版本。 3 环境配置 3.1 anaconda环境配置 找到设置,点击系统->系统信息->高级系统设置->环境变量…

归一化和标准化(Z-Score)

在处理数据过程中,通常会有不同规格的数据,比如年龄的取值范围是0-130,收入的取值范围是0-100000等等,如果不进行归一化或标准化处理,梯度下降每次走过的相对长度就不一样,就导致某个参数很快就找到了最优解…

Android排队预约系统(Java+SqLite+ZXing)

自己写的排队预约系统,可改写,添加功能,如管理用户,查询排队人数等功能。(由于是选修课课设,所以写的比较粗糙) 使用方法: 1.使用Android studio导入项目。 2.使用gradle加载build.gradle.kts中的依赖。…

DC-6靶场

DC-6靶场下载: https://www.five86.com/downloads/DC-6.zip 下载后解压会有一个DC-3.ova文件,直接在vm虚拟机点击左上角打开-->文件-->选中这个.ova文件就能创建靶场,kali和靶机都调整至NAT模式,即可开始渗透 首先进行主…

MatGPT - 访问 OpenAI™ ChatGPT API 的 MATLAB® 应用程序

系列文章目录 前言 MatGPT 是一款 MATLAB 应用程序,可让您轻松访问 OpenAI 的 ChatGPT API。使用该应用程序,您可以加载特定用例的提示列表,并轻松参与对话。如果您是 ChatGPT 和提示工程方面的新手,MatGPT 不失为一个学习的好方…

模拟信号和数字信号的区别

模拟和数字信号是携带信息的信号类型。两种信号之间的主要区别在于模拟信号具有连续电信号,而数字信号具有非连续电信号。 模拟信号和数字信号之间的差异可以通过不同类型波的例子来观察。 什么是模拟信号(Analog Signals)? 许多系统使用模拟信号来传输…

跟着野火学FreeRTOS:第一段(任务定义,切换以及临界段)

在裸机系统中,系统的主体就是 C P U CPU CPU按照预先设定的程序逻辑在 m a i n main main函数里面顺序执行的无限循环。在多任务系统中,根据功能的不同,把整个系统分割成一个个独立的,无限循环且不能返回的的函数,这个…

【C++题目速刷】二分查找

【C题目速刷】二分查找 一、二分查找1、题目链接2、解题3、代码 二、在排序数组中查找元素的第一个和最后一个位置1、题目链接2、解题3、代码4、算法模板 三、x的平方根1、解题链接2、解题3、代码 四、搜索插入位置1、题目链接2、解题3、代码 五、山脉数组的峰顶索引1、题目链接…

Python新闻文本分类系统的设计与实现:基于Flask、贝叶斯算法的B/S架构

Python新闻文本分类系统的设计与实现:基于Flask、贝叶斯算法的B/S架构 引言数据获取与处理数据分析与可视化文本分类模型结论 引言 在信息爆炸的时代,新闻数据的快速获取和准确分类变得尤为重要。本文将介绍一种基于Python语言、Flask技术、B/S架构以及…

智能优化算法应用:基于野狗算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于野狗算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于野狗算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.野狗算法4.实验参数设定5.算法结果6.参考文献7.MA…

msvcp120.dll丢失的多种详细有效解决方法

在计算机使用过程中,我们可能会遇到一些错误提示,其中之一就是“msvcp120.dll丢失”。那么,msvcp120.dll到底是什么?为什么会出现丢失的情况?丢失后会对电脑产生什么影响?本文将为您详细解答这些问题&#…

【汇编先导】-- 2

汇编先导 6. 寄存器 存储数据:CPU > 内存 > 硬盘(固态、机械) CPU还可分为: 32位CPU 8 16 32 64位CPU 8 16 32 64(增加了寻址能力) 通用寄存器 # 32位的通用寄存器只有8个 # 可以在任意软件的底层看到 # 通用寄存器可以存储任何值存值的范围…

【动态规划】08路径问题_下降路径最小和_C++(medium)

题目链接:leetcode下降路径最小和 目录 题目解析: 算法原理 1.状态表示 2.状态转移方程 3.初始化 4.填表顺序 5.返回值 编写代码 题目解析: 题目让我们求通过 matrix 的下降路径 的 最小和 由题可得: 在下一行选择的元…

【职言】三年功能测试,一些测试工作的“吐槽”

以下为作者观点: 概述 作为功能测试,我也分享下日常工作中功能测试值得吐槽的问题,由于工作时间不长且未进过大厂,不了解大公司的工作模式和流程,所以自己的方法和理解都是基于中小公司的工作经验总结,应…

【Linux】Linux基础命令

写在前面: 傍晚时分,你坐在屋檐下,看着天慢慢地黑下去,心里寂寞而凄凉,感到自己的生命被剥夺了。当时我是个年轻人,但我害怕这样生活下去,衰老下去。在我看来,这是比死亡更可怕的事…

flask 之上传与下载

from flask import Flask, render_template, request, send_from_directory, redirect, url_for import osapp Flask(__name__)# 上传文件存储路径 UPLOAD_FOLDER uploads app.config[UPLOAD_FOLDER] UPLOAD_FOLDERapp.route(/) def index():# 确保上传文件夹存在if not os.…

小程序中实现长按二维码图片识别

本文使用小程序提供的imae组件实现二维码的识别,在小程序官方文档中给出了该组件一个用于识别图片的属性show-menu-by-longpress。 属性说明:长按图片显示发送给朋友、收藏、保存图片、搜一搜、打开名片/前往群聊/打开小程序(若图片中包含对应…

Ubuntu-20.04.2 mate 上安装、配置、测试 qtcreator

一、从repo中安装 Ubuntu-20.04.2的repo中,qtcreator安装包挺全乎的,敲完 sudo apt install qtcreator 看一下同时安装和新软件包将被安装列表,压缩包252MB,解压安装后933MB,集大成的一包。 sudo apt install qtcrea…

【从服务器获取共享列表失败】【无法与设备或资源通信】解决方案!

【从服务器获取共享列表失败】背景: 某项目搭建有samba共享,使用一段时间后,不知何种原因,客户端链接共享时报:从服务器获取共享列表失败,无效的参数。 可参考解决方案A: 银河麒麟samba共享文…

【经典LeetCode算法题目专栏分类】【第7期】快慢指针与链表

《博主简介》 小伙伴们好,我是阿旭。专注于人工智能AI、python、计算机视觉相关分享研究。 ✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~ 👍感谢小伙伴们点赞、关注! 快慢指针 移动零 class…