先看目录,除了2018年比较怪,其他最多2个D(数学只有两个弟弟,一个大弟,一个小弟)
 
文章目录
- 2023
- 真题(2023-16)-D
 
- 2022
- 真题(2022-21)-D-分析选项⇒是否等价⇒是,选D
 
- 2021
- 真题(2021-21)-D-特值体系法;
- 真题(2021-25)-D-要素列表法plus-要素间的比;一般而言,完成拼图要确定几个要素与就需要条件匹配几个关系;若只要求几个要素之间的比,则需要的关系个数减1;-D-数列-等差数列和等比数列
 
- 2020
- 真题(2020-21)-D-分析选项⇒是否等价⇒是,选D
 
- 2019
- 真题(2019-17)-D
- 真题(2019-20)-D
 
- 2018
- 真题(2018-18)-D-要素列表法plus-特殊套路-所有圆半径,球半径,均设为需要通过勾股定理求解;即要确定两个要素,需要两个关系;
- 真题(2018-19)-D
- 真题(2018-20)-D-分析选项⇒是否等价⇒是,选D
- 真题(2018-23)-D
- 真题(2018-25)-D-选项有取值范围⇒分三种情况⇒取值范围有交集选C⇒取值范围共边界但反向选A⇒取值范围不相邻,相加非全集选D
 
- 2017
- 真题(2017-16)-D-分析选项⇒是否等价⇒是,选D
 
- 2016
- 真题(2016-25)-D-要素列表法plus-特殊套路-一次与二次-大前提有等式+一次条件 vs 二次条件 ⟹ 选D;
 
- 2015
- 真题(2015-16)-D
- 真题(2015-23)-D
 
- 2014
- 2013
- 真题(2013-20)-D-翻译“≥≤”:题干或选项可以翻译为“≥”或“≤”,选D。得:题干“达到0.999”翻译为“≥0.999”,选D。(谁能想到呢。_。)
- 真题(2013-25)-D;-容易误判选A,因为选范围小的,也容易误判选C,因为一个等号+一个不等号!!!!!!
 
 
2023
真题(2023-16)-D
-数据分析-排列组合-组合-C运算
 

2022
真题(2022-21)-D-分析选项⇒是否等价⇒是,选D
-数列-等比数列-等比中项;勾股定理
 21.某直角三角形的三边长 𝑎 , 𝑏 , 𝑐 成等比数列,则能确定公比的值
 (1)𝑎 是直角边长
 (2)𝑐 是斜边长
 
2021
真题(2021-21)-D-特值体系法;
D-几何-解析几何-位置-线圆位置-相离-也还是转为圆心点到直线的距离公式
 21.设x ,y为实数,则能确定 
     
      
       
       
         x 
        
       
         ≤ 
        
       
         y 
        
       
      
        x≤y 
       
      
    x≤y。
 (1) 
     
      
       
        
        
          x 
         
        
          2 
         
        
       
         ≤ 
        
       
         y 
        
       
         − 
        
       
         1 
        
       
      
        x^2≤y-1 
       
      
    x2≤y−1。
 (2) 
     
      
       
        
        
          x 
         
        
          2 
         
        
       
         + 
        
       
         ( 
        
       
         y 
        
       
         − 
        
       
         2 
        
        
        
          ) 
         
        
          2 
         
        
       
         ≤ 
        
       
         2 
        
       
      
        x^2+(y-2)^2≤2 
       
      
    x2+(y−2)2≤2。
 

真题(2021-25)-D-要素列表法plus-要素间的比;一般而言,完成拼图要确定几个要素与就需要条件匹配几个关系;若只要求几个要素之间的比,则需要的关系个数减1;-D-数列-等差数列和等比数列
25.给定两个直角三角形,则这两个直角三角形相似。
 (1)每个直角三角形边长成等比数列。
 (2)每个直角三角形边长成等差数列。
 
 
 
2020
真题(2020-21)-D-分析选项⇒是否等价⇒是,选D
-几何-立方几何
 21、在长方体中,能确定长方体的体对角线长度。
 (1)已知长方体一个顶点的三个面的面积。
 (2)已知长方体一个顶点的三个面的面对角线的长度。
 
 
2019
真题(2019-17)-D
-数据分析-概率已知事件的概率求概率⟹ 独立事件概型⟹ 乘法计算概率
 17、有甲乙两袋奖券,获奖率分别为 p 和q ,某人从两袋中各随机抽取 1 张奖券,则此人获奖的概率不小于 
     
      
       
        
        
          3 
         
        
          2 
         
        
       
      
        \frac{3}{2} 
       
      
    23
 (1) 已经 
     
      
       
       
         p 
        
       
         + 
        
       
         q 
        
       
         = 
        
       
         1 
        
       
      
        p + q = 1 
       
      
    p+q=1
 (2) 已知  
     
      
       
       
         p 
        
       
         q 
        
       
         = 
        
        
        
          1 
         
        
          4 
         
        
       
      
        pq=\frac{1}{4} 
       
      
    pq=41
 
 
真题(2019-20)-D
-代数-方程-整数不定方程
 20、关于 x 的方程 
     
      
       
        
        
          x 
         
        
          2 
         
        
       
         + 
        
       
         a 
        
       
         x 
        
       
         + 
        
       
         b 
        
       
         = 
        
       
         1 
        
       
      
        x^2+ax+b=1 
       
      
    x2+ax+b=1有实根
(1)  
     
      
       
       
         a 
        
       
         + 
        
       
         b 
        
       
         = 
        
       
         0 
        
       
      
        a +b =0 
       
      
    a+b=0
 (2)  
     
      
       
       
         a 
        
       
         − 
        
       
         b 
        
       
         = 
        
       
         0 
        
       
      
        a −b =0 
       
      
    a−b=0
 
 
2018
真题(2018-18)-D-要素列表法plus-特殊套路-所有圆半径,球半径,均设为需要通过勾股定理求解;即要确定两个要素,需要两个关系;
-D-代数-方程-出现了两个及以上未知量,而数量关系却少于未知量的个数-整数不定方程-先根据题目转化为ax+by=c形式的不定方程,然后结合整除、倍数和奇偶特征分析讨论求解
 18.设 
     
      
       
       
         m 
        
       
         , 
        
       
         n 
        
       
      
        m,n 
       
      
    m,n是正整数,则能确定 
     
      
       
       
         m 
        
       
         + 
        
       
         n 
        
       
      
        m+n 
       
      
    m+n的值。
 (1)  
     
      
       
        
        
          1 
         
        
          m 
         
        
       
         + 
        
        
        
          3 
         
        
          n 
         
        
       
         = 
        
       
         1 
        
       
      
        {1\over{m}}+{3\over{n}}=1 
       
      
    m1+n3=1
 (2)  
     
      
       
        
        
          1 
         
        
          m 
         
        
       
         + 
        
        
        
          2 
         
        
          n 
         
        
       
         = 
        
       
         1 
        
       
      
        {1\over{m}}+{2\over{n}}=1 
       
      
    m1+n2=1
 


 
 
真题(2018-19)-D
-代数-不等式-均值不等式
 19.甲、乙、丙 3 人年收入成等比数列,则能确定乙的年收入最大值。
 (1)已知甲丙两人年收入之和。 
 (2)已知甲丙两人年收入之积。
 

 
真题(2018-20)-D-分析选项⇒是否等价⇒是,选D
-几何-平面几何-长方形
 20.如图所示,在矩形ABCD中AE=FC,则三角形AED与四边形 BCFE能拼成一个直角三角形。
 (1)EB=2FC
 (2)ED=EF
 
 

 
 
真题(2018-23)-D
-应用题-增长率
 23.如果甲公司年终奖总额增加 25%,乙公司年终奖总额减少 10%,两者相等,则能确定两公司的员工人数之比。
 (1)甲公司的人均年终奖与乙公司相同。
 (2)两公司的员工数之比与两公司年终奖总额之比相等。
 D。本题考查比例问题。设甲公司的年终奖总额为a,乙公司的年终奖总额为b,则有a(1+25%)=b(1-10%),简化得两公司年终奖总额之比a/b=18/25,结合条件(1),可得两公司员工人数之比与奖金总额之比相等,故(1)充分,条件(2)显然充分。
 秒杀:等价条件题,选项(1)是(2)充分必要条件,都选D。∵(2)甲员工/乙员工=甲年终/乙年终,得:甲年终/甲员工=乙年终/乙员工,得:甲人均年终奖=乙人均年终奖。
 

 
真题(2018-25)-D-选项有取值范围⇒分三种情况⇒取值范围有交集选C⇒取值范围共边界但反向选A⇒取值范围不相邻,相加非全集选D
-函数-复合函数
 25.设函数 
     
      
       
       
         f 
        
       
         ( 
        
       
         x 
        
       
         ) 
        
       
         = 
        
        
        
          x 
         
        
          2 
         
        
       
         + 
        
       
         a 
        
       
         x 
        
       
      
        f(x)=x^2+ax 
       
      
    f(x)=x2+ax ,则 f (x) 最小值与 
     
      
       
       
         f 
        
       
         ( 
        
       
         f 
        
       
         ( 
        
       
         x 
        
       
         ) 
        
       
         ) 
        
       
      
        f(f(x)) 
       
      
    f(f(x))的最小值相等。
 (1) 
     
      
       
       
         a 
        
       
         ≥ 
        
       
         2 
        
       
      
        a ≥ 2 
       
      
    a≥2
 (2) 
     
      
       
       
         a 
        
       
         ≤ 
        
       
         0 
        
       
      
        a ≤ 0 
       
      
    a≤0
 

 

2017
真题(2017-16)-D-分析选项⇒是否等价⇒是,选D
-应用题-工程
 16.某人需要处理若干份文件,第一个小时处理了全部文件的 15,第二个小时处理了剩余文件的 14,则此人需要处理的文件共 25 份。
 (1)前两小时处理了 10 份文件 
 (2)第二小时处理了 5 份文件
 

2016
真题(2016-25)-D-要素列表法plus-特殊套路-一次与二次-大前提有等式+一次条件 vs 二次条件 ⟹ 选D;
-D-代数-方程-一元二次方程-根的分布
 25.已知 
     
      
       
       
         f 
        
       
         ( 
        
       
         x 
        
       
         ) 
        
       
         = 
        
        
        
          x 
         
        
          2 
         
        
       
         + 
        
       
         a 
        
       
         x 
        
       
         + 
        
       
         b 
        
       
      
        f(x)=x^2+ax+b 
       
      
    f(x)=x2+ax+b,则 
     
      
       
       
         0 
        
       
         ≤ 
        
       
         f 
        
       
         ( 
        
       
         1 
        
       
         ) 
        
       
         ≤ 
        
       
         1 
        
       
      
        0≤f(1)≤1 
       
      
    0≤f(1)≤1
 (1)  
     
      
       
       
         f 
        
       
         ( 
        
       
         x 
        
       
         ) 
        
       
      
        f(x) 
       
      
    f(x) 在区间[ 0,1 ]中有两个零点。
 (2)  
     
      
       
       
         f 
        
       
         ( 
        
       
         x 
        
       
         ) 
        
       
      
        f(x) 
       
      
    f(x) 在区间[ 1,2 ]中有两个零点。
 

2015
真题(2015-16)-D
-几何-解析几何-直线与圆的位置关系
 16.圆盘 
     
      
       
        
        
          x 
         
        
          2 
         
        
       
         + 
        
        
        
          y 
         
        
          2 
         
        
       
         ≤ 
        
       
         2 
        
       
         ( 
        
       
         x 
        
       
         + 
        
       
         y 
        
       
         ) 
        
       
      
        x^2+y^2≤2(x+y) 
       
      
    x2+y2≤2(x+y)被直线 L 分成面积相等的两部分。
 (1) L: 
     
      
       
       
         x 
        
       
         + 
        
       
         y 
        
       
         = 
        
       
         2 
        
       
      
        x + y = 2 
       
      
    x+y=2
 (2) L: 
     
      
       
       
         2 
        
       
         x 
        
       
         − 
        
       
         y 
        
       
         = 
        
       
         1 
        
       
      
        2x-y= 1 
       
      
    2x−y=1
 
 
真题(2015-23)-D
-数列-等差数列-前n项和的最值
 23.已知数列{ 
     
      
       
        
        
          a 
         
        
          n 
         
        
       
      
        a_n 
       
      
    an}是公差大于零的等差数列,{ 
     
      
       
        
        
          S 
         
        
          n 
         
        
       
      
        S_n 
       
      
    Sn}是{ 
     
      
       
        
        
          a 
         
        
          n 
         
        
       
      
        a_n 
       
      
    an}的前n 项和。则 
     
      
       
        
        
          S 
         
        
          n 
         
        
       
         ≥ 
        
        
        
          S 
         
        
          10 
         
        
       
         , 
        
       
         n 
        
       
         = 
        
       
         1 
        
       
         , 
        
       
         2 
        
       
         , 
        
       
         . 
        
       
         . 
        
       
         . 
        
       
      
        S_n≥S_{10},n=1,2,... 
       
      
    Sn≥S10,n=1,2,...
 (1) 
     
      
       
        
        
          a 
         
        
          10 
         
        
       
         = 
        
       
         0 
        
       
      
        a_{10}=0 
       
      
    a10=0
 (2) 
     
      
       
        
        
          a 
         
        
          11 
         
        
        
        
          a 
         
        
          10 
         
        
       
         < 
        
       
         0 
        
       
      
        a_{11}a_{10}<0 
       
      
    a11a10<0
 
 
 
2014
2013
真题(2013-20)-D-翻译“≥≤”:题干或选项可以翻译为“≥”或“≤”,选D。得:题干“达到0.999”翻译为“≥0.999”,选D。(谁能想到呢。_。)
-数据分析-概率-已知事件的概率求概率⟹ 独立事件概型⟹ 乘法计算概率-独立事件-若干独立事件同时发生的概率,等于这些事件单独发生的概率的乘积=分步乘-
 20.档案馆在一个库房安装了n个烟火感应报警器,每个报警器遇到烟火成功报警的概率为 
     
      
       
       
         p 
        
       
      
        p 
       
      
    p。该库房遇烟火发出报警的概率达到 
     
      
       
       
         0.999 
        
       
      
        0.999 
       
      
    0.999。
 (1)  
     
      
       
       
         n 
        
       
         = 
        
       
         3 
        
       
         , 
        
       
         p 
        
       
         = 
        
       
         0.9 
        
       
      
        n = 3,p = 0.9 
       
      
    n=3,p=0.9 
 (2)  
     
      
       
       
         n 
        
       
         = 
        
       
         2 
        
       
         , 
        
       
         p 
        
       
         = 
        
       
         0.97 
        
       
      
        n = 2,p = 0.97 
       
      
    n=2,p=0.97
 
真题(2013-25)-D;-容易误判选A,因为选范围小的,也容易误判选C,因为一个等号+一个不等号!!!!!!
-数列-递推公式-难度升级-中间段才出现周期
 25.设 
     
      
       
        
        
          a 
         
        
          1 
         
        
       
         = 
        
       
         1 
        
       
         , 
        
        
        
          a 
         
        
          2 
         
        
       
         = 
        
       
         k 
        
       
         , 
        
       
         . 
        
       
         . 
        
       
         . 
        
       
         , 
        
        
        
          a 
         
         
         
           n 
          
         
           + 
          
         
           1 
          
         
        
       
         = 
        
       
         ∣ 
        
        
        
          a 
         
        
          n 
         
        
       
         − 
        
        
        
          a 
         
         
         
           n 
          
         
           − 
          
         
           1 
          
         
        
       
         ∣ 
        
       
         , 
        
       
         ( 
        
       
         n 
        
       
         ≥ 
        
       
         2 
        
       
         ) 
        
       
      
        a_1=1,a_2=k,...,a_{n+1}=|a_n-a_{n-1}|,(n≥2) 
       
      
    a1=1,a2=k,...,an+1=∣an−an−1∣,(n≥2) ,则 
     
      
       
        
        
          a 
         
        
          100 
         
        
       
         + 
        
        
        
          a 
         
        
          101 
         
        
       
         + 
        
        
        
          a 
         
        
          102 
         
        
       
         = 
        
       
         2 
        
       
      
        a_{100}+a_{101}+a_{102}=2 
       
      
    a100+a101+a102=2
 (1)  
     
      
       
       
         k 
        
       
         = 
        
       
         2 
        
       
      
        k = 2 
       
      
    k=2
 (2)k 是小于 20 的正整数

 



















