数据分析为何要学统计学(4)——何为置信区间?它有什么作用?

news2024/11/26 22:45:02

置信区间是统计学中的一个重要工具,是用样本参数(\bar u ,\sigma)估计出来的总体均值在某置信水平下的范围。通俗一点讲,如果置信度为95%(等价于显著水平a=0.05),置信区间为[a,b],这就意味着总体均值落入该区间的概率为95%,或者以95%的可信程度相信总体均值在这个范围内。

一般情况下当我们抽样的数量大于等于30时,可认为样本均值服从正态分布,以此我们通过查标准正态分布表,获得显著水平a下的z值,用以下公式即可获得置信区间。

[\bar u-\frac{|z_a|}{\sqrt n}*\sigma ,\bar u+\frac{|z_a|}{\sqrt n}*\sigma]

 如果样本数量小于30,我们可以根据中心极限定理,进行多轮抽样产生均值样本,计算置信区间。如下例所示。

工厂要确定95%置信水平下的产品成份含量的置信区间,但手里只有20个样本数据,如何来估计总体的成分含量呢?

我们可以对这20个样本数据进行30轮重复采样,每次随机采样10件产品,记录其均值。这样会得到由30个均值构成的样本。根据中心极限定理,这个样本服从正态分布,于是我们就可以用这个均值样本来估计总体的成分含量置信区间了。

 示例代码如下:

#初始化样本
X=np.array([91,94,91,94,97,83,91,95,94,96,97,95,90,91,95,91,88,85,89,93])

#样本排序,为了适应下面的随机抽样函数
X=sorted(X)

#使用random模块的随机抽样函数sample,进行抽样。该函数有两个参数,第一个是样本集合,第二个是抽取数量
import random

#进行30轮随机抽样同时计算均值,形成新的正态分布的样本
n=30
X_new=[np.mean(random.sample(X, 10)) for i in range(n)]

#计算样本均值和标准差
mu,std=np.mean(X_new),np.std(X_new)

#求置信区间
[mu-std/np.sqrt(n)*1.96,mu+std/np.sqrt(n)*1.96]

最终估计的总体均值置信区间为[91.69, 92.18]。


中心极限定理:无论样本所属总体服务什么分布,对该样本进行n次随机采样,产生n个新的样本,那么这n个样本的n个均值所在总体服务正态分布。而且n越大,越接近正态分布。如下例

这是0到9,10个数构成的样本,其分布图如下所示,是一个均匀分布。

然后我们进行20轮重复采样,每次采集2个数字,形成的均值样本分布如下图所示, 正态分布还不明显

 进行50轮重复采样,形成的均值样本分布如下图所示, 正态分布开始显现

进行1000轮重复采样,形成的均值样本分布如下图所示, 基本呈正态分布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1319158.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

宏基因组学Metagenome-磷循环Pcycle功能基因分析-从分析过程到代码及结果演示-超详细保姆级流程

大背景介绍 生信分析,凡事先看论文,有了论文就有了参考,后续分析就有底了,直接上硬菜开干: PCycDB: a comprehensive and accurate database for fast analysis of phosphorus cycling genes - PubMed 数据库及部分分析代码github库: GitHub - ZengJiaxiong/Phospho…

7.实现任务的rebalance

1.设计 1.1 背景 系统启动后,所有任务都在被执行,如果这时某个节点宕机,那它负责的任务就不能执行了,这对有稳定性要求的任务是不能接受的,所以系统要实现rebalance的功能。 1.2 设计 下面是Job分配与执行的业务点…

深度学习中的潜在空间

1 潜在空间定义 Latent Space 潜在空间:Latent ,这个词的语义是“隐藏”的意思。“Latent Space 潜在空间”也可以理解为“隐藏的空间”。Latent Space 这一概念是十分重要的,它在“深度学习”领域中处于核心地位,即它是用来学习…

【每日一题】寻找峰值

文章目录 Tag题目来源解题思路方法一&#xff1a;二分查找 写在最后 Tag 【二分查找】【数组】【2023-12-18】 题目来源 162. 寻找峰值 解题思路 方法一&#xff1a;二分查找 思路 进行二分查找&#xff0c;记当前的二分中点为 mid&#xff1a; 如果 nums[mid] < nums…

UE4 去除重复纹理

如果直接连的话&#xff0c;效果如下&#xff1a; 就存在很多重复的纹理&#xff0c;如何解决这个问题呢&#xff1f; 将同一个纹理&#xff0c;用不同的Tilling&#xff0c;将Noise进行Lerp两者之间&#xff0c;为什么要这么做呢&#xff1f;因为用一个做清晰纹理&#xff0c;…

linux驱动的学习 驱动开发初识

1 设备的概念 在学习驱动和其开发之前&#xff0c;首先要知道所谓驱动&#xff0c;其对象就是设备。 1.1 主设备号&次设备号&#xff1a; 在Linux中&#xff0c;各种设备都以文件的形式存在/dev目录下&#xff0c;称为设备文件。最上层的应用程序可以打开&#xff0c;关…

1852_bash中的find应用扩展

Grey 全部学习内容汇总&#xff1a; https://github.com/GreyZhang/toolbox 1852_bash中的find应用扩展 find这个工具我用了好多年了&#xff0c;但是是不是真的会用呢&#xff1f;其实不然&#xff0c;否则也不会出现这种总结式的笔记。其实&#xff0c;注意部分小细节之后…

[AutoSar]基础部分 RTE 介绍

目录 关键词平台说明一、什么是RTE二、RTE的主要功能 关键词 嵌入式、C语言、autosar、EcuM、wakeup、flex 平台说明 项目ValueOSautosar OSautosar厂商vector芯片厂商TI编程语言C&#xff0c;C编译器HighTec (GCC) 一、什么是RTE RTE&#xff08;Run-Time Environment&…

Docker 的基本概念、优势、及在程序开发中的应用

Docker 是一种容器化平台,它通过使用容器化技术,将应用程序及其依赖性打包到一个独立的、可移植的容器中,从而实现应用程序的快速部署、可靠性和可扩展性。 下面是 Docker 的一些基本概念和优势: 容器:Docker 使用容器化技术,将应用程序及其依赖性打包到一个可移植的容器…

网络基础(十一):VRRP原理与配置

目录 前言&#xff1a; 1、VRRP的基本概述 2、VRRP的基本原理 2.1VRRP的基本结构 2.2设备类型 2.3状态机 2.4VRRP路由器的抢占功能 2.5VRRP路由器的优先级 2.6VRRP工作原理 2.7主备路由器的工作内容 3、VRRP的基本配置 3.1配置主路由器和备用路由器 3.2配置PC1与P…

DOM树和DOM对象与JS关系的深入研究

const和let使用说明 var不好用&#xff0c;我们如果用变量都是用let&#xff0c;如果用常量乃是不变的量&#xff0c;我们用const&#xff0c;见let const知变量是否可变。比如一个常量在整个程序不会变&#xff0c;但是你用let&#xff0c;是可以的。但是let最好与内部变量改…

【二分查找】【z型搜索】LeetCode240:搜索二维矩阵

LeetCoe240搜索矩阵 本文涉及的基础知识点 二分查找算法合集 题目 编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性&#xff1a; 每行的元素从左到右升序排列。 每列的元素从上到下升序排列。 示例 1&#xff1a; 输入&#xff1a;…

爬虫练习-获取imooc课程目录

代码&#xff1a; from bs4 import BeautifulSoup import requests headers{ User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:94.0) Gecko/20100101 Firefox/94.0, }id371 #课程id htmlrequests.get(https://coding.imooc.com/class/chapter/id.html#Anchor,head…

【FPGA】电梯楼层显示(简易)

前言 这是作者室友的项目&#xff0c;本来不管作者事儿的&#xff0c;但是后来听到说是室友去网上找人花了80块买了个劣质的&#xff0c;不仅是从CSDN上抄的&#xff0c;而且使用的板子还不符合室友的要求。可叹作者心软啊&#xff0c;顺便给室友做了。 在代码实现部分会给出设…

手机上的python怎么运行,python在手机上怎么运行

大家好&#xff0c;本文将围绕python程序如何在手机端运行展开说明&#xff0c;python程序如何在手机上运行是一个很多人都想弄明白的事情&#xff0c;想搞清楚手机上的python怎么运行需要先了解以下几个事情。 如何用手机编程Python&#xff1f; 1.QPython3&#xff1a;这是一…

高性价比AWS Lambda无服务体验

前言 之前听到一个讲座说到AWS Lambda服务&#xff0c;基于Serverless无服务模型&#xff0c;另外官网还免费提供 100 万个请求 按月&#xff0c;包含在 AWS 免费套餐中是真的很香&#xff0c;对于一些小型的起步的网站或者用户量不大的网站&#xff0c;简直就是免费&#xff…

liunx之Samba服务器

环境&#xff1a;虚拟机CENTOS 7和 测试机相通 一、Samba服务器_光盘共享&#xff08;匿名访问&#xff09; 1.在虚拟机CENTOS 7安装smb服务&#xff0c;并在防火墙上允许samba流量通过 2. 挂载光盘 3.修改smb.conf配置文件&#xff0c;实现光盘匿名共享 4. 启动smb服务 5.在…

数据结构-猴子吃桃问题

一、需求分析 有一群猴子摘了一堆桃子&#xff0c;他们每天都吃当前桃子的一半且再多吃一个&#xff0c;到了第10天就只余下一个桃子。用多种方法实现求出原来这群猴子共摘了多少个桃子。要求&#xff1a; 1)采用数组数据结构实现上述求解&#xff1b; 2)采用链数据结构实现上述…

EM(Expectation-Maximum)算法

EM算法 简介 EM算法的核心分为两步 E步&#xff08;Expection-Step&#xff09;M步&#xff08;Maximization-Step&#xff09; 因为在最大化过程中存在两个参量 r , θ r,\theta r,θ&#xff0c;其中若知道 r r r&#xff0c;则知道 θ \theta θ&#xff1b;若知道 θ \…

04_Web框架之Django一

Web框架之Django一 学习目标和内容 1、能够描述Django的作用 2、能够使用Django创建应用 3、能够使用GET和POST请求方式进行传参 4、能够使用Django的函数式方法定义视图 5、能够进行Django的配置文件修改 6、能够基本使用Django的路由定义 一、Django相关介绍 1、什么是Djan…