C#深拷贝效率对比

news2024/11/22 10:31:12

对于浅拷贝和深拷贝,前面的文章已经说明了。

C#浅拷贝和深拷贝数据-CSDN博客

        本篇说一下,深拷贝的效率问题,效率一直是程序追求的,效率越高肯定越好,有时候功能是实现了,但是运行以及处理数据的效率非常低,此时就让人很头疼,当你知道了如何提高效率的时候,在你实现功能的时候,就已经考虑进去了,而不是先把功能做好,后期再优化(当然这种模式覆盖大部分人的开发习惯)。

测试1:

使用共同的数据结构和100W数量,分别对比4种深拷贝的效率问题。

1.反射

耗时:3465 

2.JSON字符串序列化

耗时: 7095

3.表达式树

耗时:396 

4.AutoMapper

耗时:682 

结论:
表达式树>AutoMapper>反射>JSON。如果数据结构非常复杂而且多,那么就使用表达式树。 

测试2:

使用共同的数据结构和10W数量,分别对比4种深拷贝的效率问题。

1.反射

耗时:498

2.JSON字符串序列化

耗时: 1072

3.表达式树

耗时:243

4.AutoMapper

耗时:268

结论:

表达式树>AutoMapper>反射>JSON

代码:


using AutoMapper;
using Newtonsoft.Json;
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using System.Linq.Expressions;
using System.Reflection;
using System.Text;
using System.Text.Json;
using System.Threading.Tasks;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;
using static WpfApp4.MainWindow;
using Expression = System.Linq.Expressions.Expression;

namespace WpfApp4
{
    /// <summary>
    /// Interaction logic for MainWindow.xaml
    /// </summary>
    public partial class MainWindow : Window
    {
        public MainWindow()
        {
            InitializeComponent();

            Stopwatch sw = new Stopwatch();
            sw.Start();
            var config = new MapperConfiguration(cfg => cfg.CreateMap<TestData1, TestData1>());//映射配置
            for (int i = 0; i < 10_0000; i++)
            {
                TestData3 testData3 = new TestData3();
                testData3.ID = 3 + i;
                testData3.D1 = "3.1" + i.ToString();
                testData3.D2 = "3.2" + i.ToString();

                TestData2 testData2 = new TestData2();
                testData2.ID = 2 + i;
                testData2.D1 = "2.1" + i.ToString();
                testData2.D2 = "2.2" + i.ToString();
                testData2.testData3 = testData3;

                TestData1 testData1 = new TestData1();
                testData1.ID = 1 + i;
                testData1.D1 = "1.1" + i.ToString();
                testData1.D2 = "1.2" + i.ToString();
                testData1.testData2 = testData2;
                //反射效率
                //var test2 = DeepCopyWithReflection(testData1);

                //JSON字符串序列化效率
                //var test3 = JsonConvert.DeserializeObject<TestData1>(JsonConvert.SerializeObject(testData1));

                //表达式树效率
                //var test4 = TransExp<TestData1, TestData1>.Trans(testData1);

                //AutoMapper效率
                var test5 = config.CreateMapper().Map<TestData1>(testData1);

            }
            double count = sw.Elapsed.TotalMilliseconds;
            sw.Stop();
            int a = 0;
        }



        /// <summary>
        /// 利用反射实现深拷贝
        /// </summary>
        /// <typeparam name="T"></typeparam>
        /// <param name="obj"></param>
        /// <returns></returns>
        public static T DeepCopyWithReflection<T>(T obj)
        {
            Type type = obj.GetType();

            // 如果是字符串或值类型则直接返回
            if (obj is string || type.IsValueType) return obj;
            // 如果是数组
            if (type.IsArray)
            {
                Type elementType = Type.GetType(type.FullName.Replace("[]", string.Empty));
                var array = obj as Array;
                Array copied = Array.CreateInstance(elementType, array.Length);
                for (int i = 0; i < array.Length; i++)
                {
                    copied.SetValue(DeepCopyWithReflection(array.GetValue(i)), i);
                }
                return (T)Convert.ChangeType(copied, obj.GetType());
            }

            object retval = Activator.CreateInstance(obj.GetType());

            PropertyInfo[] properties = obj.GetType().GetProperties(
                BindingFlags.Public | BindingFlags.NonPublic
                | BindingFlags.Instance | BindingFlags.Static);
            foreach (var property in properties)
            {
                var propertyValue = property.GetValue(obj, null);
                if (propertyValue == null)
                    continue;
                property.SetValue(retval, DeepCopyWithReflection(propertyValue), null);
            }

            return (T)retval;
        }
        /// <summary>
        /// 表达式树
        /// </summary>
        /// <typeparam name="TIn"></typeparam>
        /// <typeparam name="TOut"></typeparam>
        public static class TransExp<TIn, TOut>
        {
            private static readonly Func<TIn, TOut> cache = GetFunc();
            private static Func<TIn, TOut> GetFunc()
            {
                ParameterExpression parameterExpression = Expression.Parameter(typeof(TIn), "p");
                List<MemberBinding> memberBindingList = new List<MemberBinding>();

                foreach (var item in typeof(TOut).GetProperties())
                {
                    if (!item.CanWrite) continue;
                    MemberExpression property = Expression.Property(parameterExpression, typeof(TIn).GetProperty(item.Name));
                    MemberBinding memberBinding = Expression.Bind(item, property);
                    memberBindingList.Add(memberBinding);
                }

                MemberInitExpression memberInitExpression = Expression.MemberInit(Expression.New(typeof(TOut)), memberBindingList.ToArray());
                Expression<Func<TIn, TOut>> lambda = Expression.Lambda<Func<TIn, TOut>>(memberInitExpression, new ParameterExpression[] { parameterExpression });

                return lambda.Compile();
            }

            public static TOut Trans(TIn tIn)
            {
                return cache(tIn);
            }

        }

    }
}

总结:总的来说,数据量在100W的时候,差距还是很明显的,建议使用表达式树,在10W数量的时候,表达式树和AutoMapper差距已经不是很大了,数据量再小的话,预计差别就更少了,具体使用,还是看程序的数据在什么量级。

源码:

https://download.csdn.net/download/u012563853/88637623

本文来源:

C#深拷贝效率对比-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1317784.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【算法】bfs与dfs算法解决FloodFill(洪流)问题(C++)

文章目录 1. 什么是FloodFill问题2. 用什么方法解决FloodFill问题3. 具体例题773.图像渲染200.岛屿数量695.岛屿的最大面积130.被围绕的区域 1. 什么是FloodFill问题 一般floodfill问题可以描述为&#xff1a;给定一个二维矩阵&#xff0c;其中每个元素代表一个像素点&#xf…

Python-flask 入门代码

python与pycharm安装 过程略&#xff0c;网上很多&#xff0c;记得为pycharm配置默认解释器 虚拟环境 pipenv # 全局安装虚拟环境 # 可加-U参数&#xff0c;明确全局安装&#xff0c;不加好像也可以? pip3 install pipenv #检查安装情况 pipenv --version # ---控制台输出…

跨域的解决方式(java后端)

文章目录 一、跨域介绍1、什么是跨域2、为什么会产生跨域3、禁止跨域的原因 二、简单请求和非简单请求1、简单请求1.1、什么时简单请求1.2、简单请求基础流程 2、非简单请求2.1、预检请求2.2、预检请求的回应2.3、浏览器的正常请求和回应 3、自定义跨域过滤器 三、解决方式1、C…

Java基础语法之抽象类和接口

抽象类 什么是抽象类 并不是所有的类都是用来描述对象的&#xff0c;这样的类就是抽象类 例如&#xff0c;矩形&#xff0c;三角形都是图形&#xff0c;但图形类无法去描述具体图形&#xff0c;所以它的draw方法无法具体实现&#xff0c;这个方法就可以没设计成抽象方法&…

003 Windows用户与组管理

Windows用户管理 一、用户账户 1、什么是用户账户 不同用户身份拥有不同的权限每个用户包含了一个名称和一个密码每个用户账户具有唯一的安全标识符查看系统中的用户 net user 安全标识符&#xff08;SID&#xff09; whoami /user 使用注册表查看 打开注册表命令regedi…

Sentinel使用详解

组件简介 Sentinel是阿里开源的一套用于服务容错的综合性解决方案。它以流量为切入点&#xff0c;从流量控制、熔断降级、系统负载保护等多个维度来保护服务的稳定性。Sentinel承接了阿里巴巴近10年的双十一大促流量的核心场景&#xff0c;例如秒杀、消息削峰填谷、集群流量控…

Java集合-12

Map的接口特点 key重复时会进行替换 package com.edu.map;import java.util.HashMap; import java.util.Map; import java.util.Set;SuppressWarnings({"all"}) public class Demo01 {public static void main(String[] args) {Map map new HashMap<>();map.…

并查集<基于ranks 的优化,基于Path Spliting的优化>

需求分析 假设有n个村庄&#xff0c;有些村庄之间有连接的路&#xff0c;有些村庄之间并没有连接的路 请你设计一个数据结构&#xff0c;能够快速执行2个操作 ◼ 查询2个村庄之间是否有连接的路◼ 连接2个村庄 首先思考在现有的数据结构能否实现上面的功能&#xff0c;数组、…

JVM学习之运行时数据区

运行时数据区 概述 内存 内存是非常重要的系统资源&#xff0c;是硬盘和CPU的中间桥梁&#xff0c;承载着操作系统和应用程序的实时运行。JVM内存布局规定了Java在运行过程中内存申请&#xff0c;分配&#xff0c;管理的策略&#xff0c;保证了JVM高效稳定运行。不同的JVM对于…

HTTP 302错误:临时重定向

在Web开发中&#xff0c;HTTP状态码是用于表示Web服务器响应的各种状态。其中&#xff0c;HTTP 302错误表示临时重定向&#xff0c;这意味着请求的资源已被临时移动到其他位置&#xff0c;并且服务器已经提供了新的URL&#xff0c;以便客户端可以重新发送请求。 了解HTTP 302错…

[计网01] 物理层 详细解析笔记,特性

计算机网络的物理层是网络协议栈中的第一层&#xff0c;负责传输原始的比特流&#xff08;bitstream&#xff09;通过物理媒介进行通信。物理层主要关注传输介质、信号的编码和调制、数据传输速率以及数据传输的物理连接等方面。 相关特性 机械特性&#xff08;Mechanical Ch…

网络安全—学习溯源和日志分析

日志分析的步骤&#xff1a; 判断是否为攻击行为 不是&#xff1a;不用处理 是&#xff1a;判断攻击是否成功或者失败 攻击失败&#xff1a;判断IP地址是否为恶意地址&#xff0c;可以让防火墙过滤IP地址 攻击成功&#xff1a;做应急处置和溯源分析 应急处置&#xff1a;网络下…

[楚慧杯 2023] web

文章目录 eaaevalupload_shell eaaeval 打开题目&#xff0c;源码给了用户密码 登陆后啥也没有&#xff0c;扫一下发现源码泄露www.zip <?php class Flag{public $a;public $b;public function __construct(){$this->a admin;$this->b admin;}public function _…

Python计算圆的面积,几何学技法大解析!

更多Python学习内容&#xff1a;ipengtao.com 大家好&#xff0c;我是彭涛&#xff0c;今天为大家分享 Python计算圆的面积&#xff0c;几何学技法大解析&#xff0c;全文3800字&#xff0c;阅读大约15分钟。 在本文中&#xff0c;将深入探讨如何使用 Python 计算圆的面积&…

用23种设计模式打造一个cocos creator的游戏框架----(十八)责任链模式

1、模式标准 模式名称&#xff1a;责任链模式 模式分类&#xff1a;行为型 模式意图&#xff1a;使多个对象都有机会处理请求&#xff0c;从而避免请求的发送者和接收者之间的耦合关系。将这些对象连成一条链&#xff0c;并沿着这条链传递该请求&#xff0c;直到有一个对象处…

『OPEN3D』1.5.1 动手实现点云暴力最近邻

本专栏地址: https://blog.csdn.net/qq_41366026/category_12186023.html?spm=1001.2014.3001.5482https://blog.csdn.net/qq_41366026/category_12186023.html?spm=1001.2014.3001.5482 1、暴力最近邻法 暴力最近邻法 (Brute-force Nearest Neighbour Search,BF 搜索) 是…

【数据结构】哈希表算法总结

知识概览&#xff08;哈希表&#xff09; 哈希表可以将一些值域较大的数映射到较小的空间内&#xff0c;通常用x mod 质数的方式进行映射。为什么用质数呢&#xff1f;这样的质数还要离2的整数幂尽量远。这可以从数学上证明&#xff0c;这样冲突最小。取余还是会出现冲突情况。…

ElasticSearch学习篇8_Lucene之数据存储(Stored Field、DocValue、BKD Tree)

前言 Lucene全文检索主要分为索引、搜索两个过程&#xff0c;对于索引过程就是将文档磁盘存储然后按照指定格式构建索引文件&#xff0c;其中涉及数据存储一些压缩、数据结构设计还是很巧妙的&#xff0c;下面主要记录学习过程中的StoredField、DocValue以及磁盘BKD Tree的一些…

【数据挖掘 | 相关性分析】Jaccard相似系数详解、关于集合的相关性(详细案例、附完详细代码实现和实操、学习资源)

&#x1f935;‍♂️ 个人主页: AI_magician &#x1f4e1;主页地址&#xff1a; 作者简介&#xff1a;CSDN内容合伙人&#xff0c;全栈领域优质创作者。 &#x1f468;‍&#x1f4bb;景愿&#xff1a;旨在于能和更多的热爱计算机的伙伴一起成长&#xff01;&#xff01;&…

《opencv实用探索·二十》点追踪技术

前言&#xff1a; 在学习点追踪技术前需要先了解下光流发追踪目标&#xff0c;可以看上一章内容&#xff1a;光流法检测运动目标 如果以光流的方式追踪目标&#xff0c;基本上我们可以通过goodFeaturesToTrack函数计算一系列特征点&#xff0c;然后通过Lucas-Kanade算法进行一…