基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(一)

news2024/12/24 16:51:15

系列文章目录

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(一)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(二)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(三)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(四)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(五)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(六)


目录

  • 系列文章目录
  • 前言
  • 总体设计
    • 系统整体结构图
    • 系统流程图
  • 运行环境
    • 计算型云服务器
    • Python环境
    • TensorFlow环境
    • MySQL环境
    • Django环境
  • 其他相关博客
  • 工程源代码下载
  • 其它资料下载


在这里插入图片描述

前言

本项目以卷积神经网络(CNN)模型为基础,对收集到的猫咪图像数据进行训练。通过采用数据增强技术和结合残差网络的方法,旨在提高模型的性能,以实现对不同猫的种类进行准确识别。

首先,项目利用CNN模型,这是一种专门用于图像识别任务的深度学习模型。该模型通过多个卷积和池化层,能够有效地捕捉图像中的特征,为猫的种类识别提供强大的学习能力。

其次,通过对收集到的数据进行训练,本项目致力于建立一个能够准确辨识猫的种类的模型。包括各种猫的图像,以确保模型能够泛化到不同的种类和场景。

为了进一步提高模型性能,采用了数据增强技术。数据增强通过对训练集中的图像进行旋转、翻转、缩放等操作,生成更多的变体,有助于模型更好地适应不同的视角和条件。

同时,引入残差网络的思想,有助于解决深层网络训练中的梯度消失问题,提高模型的训练效果。这种结合方法使得模型更具鲁棒性和准确性。

最终,通过本项目,实现了对猫的种类进行精准识别的目标。这对于宠物领域、动物学研究等方面都具有实际应用的潜力,为相关领域提供了一种高效而可靠的工具。

总体设计

本部分包括系统整体结构图和系统流程图。

系统整体结构图

系统整体结构如图所示。

在这里插入图片描述

系统流程图

系统流程如图所示。

在这里插入图片描述

运行环境

本部分包括计算型云服务器、Python环境、TensorFlow环境和MySQL环境。

计算型云服务器

在阿里云官网注册并充值后,搜索"云服务器ESC",即可购买计算型云服务器。

付费模式下选择抢占式实例,地域及可用区选择华北5,类型依次选择异构计算GPU/FPGA/NPU→GPU计算型→实例规格:ecs.gn5-c4g1.xlarge

单台实例规格上限价使用自动出价,数量为1,镜像选择市场中CentOS7.3(预装NVIDIAGPU驱动和深度学习框架)V1.0

设置密码后,单击"创建实例"即可。远程连接时,输入密码登录。

Python环境

需要Python 3.6及以上配置,以Linux环境下安装为例,安装依赖环境,输入命令:

yum-y install zlib-devel bzip2-devel openssl-devel ncurses-devel sqlite-devel readline-devel tk-devel gdbm-devel db4-devel libpcap-devel xz-devel

下载Python3,输入命令:

wget https://www.python.org/ftp/python/3.6.1/Python-3.6.1.tgz

安装Python3,在/usr/local/python3目录下,输入命令:

mkdir -p /usr/local/python3
tar -zxvf Python-3.6.1.tgz

进入解压后的目录,编译安装,输入命令:

cd Python-3.6.1
./configure--prefix=/usr/local/python

建立Python3的软链,输入命令:

ln -s /usr/local/python3/bin/python3/usr/bin/python3

将/usr/local/python3/bin加入PATH,输入命令:

vim ~/.bash_profile
.bash_profile

获取别名和函数,输入命令:

if[-f~/.bashrc];then
.~/.bashrc
fi

增加新环境的目录,输入命令:

PATH=$PATH:$HOME/bin:/usr/local/python3/bin
export PATH

按Esc键,输入wq,按回车键退出。使上一步的修改生效,输入命令:

source ~/.bash_profile

检查Python3及pip3能否正常使用,输入命令:

python3 -V
pip3 -V

TensorFlow环境

安装TensorFlow环境及各种库,升级pip3,输入命令:

pip3 install --upgrade pip

查询CUDA版本,输入命令:

cat /usr/local/cuda/version.txt

查看CUDA版本,输入命令:

cat /usr/local/cuda/include/cudnn.h | grep cuDNN_MAJOR-A 2

安装对应GPU版本的TensorFlow,如图所示。

在这里插入图片描述

安装TensorFlow,输入命令:

pip3 install tensorflow_gpu==1.4

安装TensorFlow对应的Keras库,输入命令:

pip3 install keras=2.2.4

安装其他需要使用的库,输入命令:

pip3 install pillow
pip3 install numpy
pip3 install h5py
pip3 install tqdm

安装完毕。

MySQL环境

在http://www.mysql.com中下载MySQL安装包,选择Community版本。

选择MySQL Community Server,单击Go to DownloadPage,打开下载界面,选择本地安装包下载,然后直接下载。

打开下载好的安装包,按照默认设置安装MySQL(地址可更改)。在Accounts and Roles处设置root用户名和密码,用于登录数据库。

安装Navicat for MySQL,便于操作数据库。官网地址为:https://navicat.com.cn/products/navicat-for-mysql,按照默认设置安装即可。

当Navicat for MySQL客户端连接到数据库后,鼠标右键"连接名",新建名为catkind的数据库,使用UTF-8编码。

Django环境

下载PyCharm以及Anaconda,完成Python所需环境的配置,本项目使用Python 3.6版本。打开Anaconda Prompt,输入清华仓库镜像,输入命令:

conda config--add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config-set show_channel_urls yes

创建Python3.6的环境,名称为TensorFlow,输入命令:

conda create -n tensorflow python=3.6

有需要确认的地方,都输入y。
在Anaconda Prompt或者终端中激活TensorFlow环境,输入命令:

conda activate tensorflow

安装Django,输入命令:

pip install django==1.8.2
pip install pymysql==0.8.0

其他相关博客

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(二)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(三)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(四)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(五)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(六)

工程源代码下载

详见本人博客资源下载页


其它资料下载

如果大家想继续了解人工智能相关学习路线和知识体系,欢迎大家翻阅我的另外一篇博客《重磅 | 完备的人工智能AI 学习——基础知识学习路线,所有资料免关注免套路直接网盘下载》
这篇博客参考了Github知名开源平台,AI技术平台以及相关领域专家:Datawhale,ApacheCN,AI有道和黄海广博士等约有近100G相关资料,希望能帮助到所有小伙伴们。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1317463.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Win11极速安装Tensorflow-gpu+CUDA+cudnn

文章目录 0.pip/conda换默认源1.Anacondapython虚拟环境2.安装CUDA以及cudnn测试tensorflow的GPU版本安装成功的办法 0.pip/conda换默认源 为了高效下载,建议先把默认源换了,很简单这里不再赘述。(我用梯子,所以没换源&#x1f6…

数据分析(一)(附带实例和源码)

一、主要目的: 主要利用Python包,如Numpy、Pandas和Scipy等常用分析工具并结合常用的统计量来进行数据的描述,把数据的特征和内在结构展现出来。熟悉在Python开发环境中支持数据分析的可用模块以及其中的方法,基于一定的样例数据…

【Java】使用递归的方法获取层级关系数据demo

使用递归来完善各种业务数据的层级关系的获取 引言:在Java开发中,我们通常会遇到层层递进的关系型数据的获取问题,有时是树状解构,或金字塔结构,怎么描述都行,错综复杂的关系在程序中还是可以理清的。 这…

服务器RAID配置及功能介绍

服务器RAID配置及功能介绍 一、RAID磁盘阵列详解1.RAID磁盘阵列介绍2.RAID 03.RAID14.RAID35.RAID56.RAID67.RAID 10总结阵列卡介绍 一、RAID磁盘阵列详解 1.RAID磁盘阵列介绍 ①是Redundant Array of lndependent Disks的缩写中文简称为独立冗余磁盘阵列。 ②把多块独立的物…

nginx_rtmp_module 之 ngx_rtmp_mp4_module 的mp4源码分析

一:整体代码函数预览 static ngx_int_t ngx_rtmp_mp4_postconfiguration(ngx_conf_t *cf) {ngx_rtmp_play_main_conf_t *pmcf;ngx_rtmp_play_fmt_t **pfmt, *fmt;pmcf ngx_rtmp_conf_get_module_main_conf(cf, ngx_rtmp_play_module);pfmt ngx_ar…

Prometheus 监控笔记(1):你真的会玩监控吗?

认识Prometheus Prometheus 是一种开源的系统和服务监控工具,最初由 SoundCloud 开发,后来成为继 Kubernetes 之后云原生生态系统中的一部分。在 Kubernetes 容器管理系统中,通常会搭配 Prometheus 进行监控,同时也支持多种 Expo…

Node.js安装教程

虽然网上Node.js的安装教程有很多,但是基本上都是千篇一律。虽然跟着网上内容安装,却总会遇到乱七八糟的问题。为此,我写下这篇文章,除了描述node的安装教程,还会解释这样安装的过程起到一个什么作用。 文章大致上分为…

visual studio 2019 移除/卸载项目已经如何再加载项目

文章目录 移除解决方案下的某个项目添加已移除的项目移除项目加载已卸载的项目注意事项 移除解决方案下的某个项目 在项目名称上,点击鼠标右键,弹出右键工具栏,找到 移除 功能。 然后鼠标左键点击 移除。 弹出的模态框,选择确定…

《点云处理》平面拟合

前言 在众多点云处理算法中,其中关于平面拟合的算法十分广泛。本篇内容主要是希望总结归纳各类点云平面拟合算法,并且将代码进行梳理保存。 环境: VS2019 PCL1.11.1 1.RANSAC 使用ransac对平面进行拟合是非常常见的用法,PCL…

josef约瑟 时间继电器 DS-23/C AC220V 10S柜内板前接线

系列型号: DS-21时间继电器 ;DS-22时间继电器; DS-23时间继电器;DS-24时间继电器; DS-21C时间继电器;DS-22C时间继电器; DS-23C时间继电器; DS-25时间继电器;DS-26…

Delphi 编译关闭时 Stack overflow 错误

本人工程文件,编译EXE文件,程序关闭时出现 Stack overflow 错误。网搜索一些解决办法:比如,加大堆栈...,均不能问题。虽然,生成的EXE文件,执行时,无任何问题。 Stack overflow 错误&…

【面试】测试/测开(NIG2)

145. linux打印前row行日志 参考&#xff1a;linux日志打印 前10行日志 head -n 10 xx.log后10行日志 tail -n 10 xx.log tail -10f xx.log使用sed命令 sed -n 9,10p xx.log #打印第9、10行使用awk命令 awk NR10 xx.log #打印第10行 awk NR>7 && NR<10 xx.log …

基于JSP+Servlet+Mysql的建设工程监管信息

基于JSPServletMysql的建设工程监管信息 一、系统介绍二、功能展示1.企业信息列表2.录入项目信息3.项目信息列表 四、其它1.其他系统实现五.获取源码 一、系统介绍 项目名称&#xff1a;基于JSPServlet的建设工程监管信息 项目架构&#xff1a;B/S架构 开发语言&#xff1a;…

IEEE、Sci-Hub

最近要写毕业论文&#xff0c;记录一下查询资料的网站。 IEEE&#xff08;Institute of Electrical and Electronics Engineers&#xff09;是世界上最大的专业技术协会之一&#xff0c;致力于推动电气和电子工程领域的创新和发展。IEEE成立于1884年&#xff0c;总部位于美国纽…

【公务员】资料分析——做题技巧

小分互换 1 2 50 % 1 3 33.3 % 1 4 25 % 1 5 20 % 1 6 16.7 % 1 7 14.3 % 1 8 12.5 % 1 9 11.1 % 1 10 10 % 1 11 9.1 % 1 12 8.3 % 1 13 7.7 % 1 14 7.1 % 1 15 6.7 % \frac 1250\% \quad \frac 1333.3\% \quad \frac 1425\% \quad \frac 1520\% \quad \frac 16…

基于CentOS7_安装Docker

基于CentOS7_安装Docker 配置网络&#xff0c;使其能ping通外网 安装依赖包 yum install -y yum-utils device-mapper-persistent-data lvm2下载repo文件 wget -O /etc/yum.repos.d/docker-ce.repo https://repo.huaweicloud.com/docker-ce/linux/centos/docker-ce.repo更换…

基于Springboot的体育馆管理系统(有报告)。Javaee项目,springboot项目。

演示视频&#xff1a; 基于Springboot的体育馆管理系统&#xff08;有报告&#xff09;。Javaee项目&#xff0c;springboot项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构&a…

【Spring】Spring中的事务

文章目录 1. Spring事务简介2. Spring事务的案例案例代码代码目录结构数据库pom.xmlResource/jdbc.propertiesconfig/SpringConfig.javaconfig/JdbcConfig.javaconfig/MyBatisConfig.javadao/AccountDao.javaservice/AccountService.javaservice/impl/AccountServiceImpl.java测…

电子元器件介绍——电感(三)

电子元器件 文章目录 电子元器件前言一、电感的基础知识二、电感的分类与作用三、电感的作用 总结 前言 这一节学习一下电感 一、电感的基础知识 电感是导线内通过交流电流时&#xff0c;在导线的内部及其周围产生交变磁通&#xff0c;导线的磁通量与生产此磁通的电流之比。…

[python][plotly]利用plotly绘制散点图

import plotly.express as px import pandas as pd# 创建示例数据 data pd.DataFrame({x: [1, 2, 3, 4, 5],y: [5, 4, 3, 2, 1] })# 使用 plotly.express 绘制散点图 fig px.scatter(data, xx, yy, titleScatter plot) fig.show() 结果&#xff1a;