Redis课程:黑马点评

news2025/1/23 6:04:51

文章目录

    • 基于Redis实现短信登录
    • 商户查询缓存
    • 优惠券秒杀
      • 一人一单
    • 分布式锁
      • Redis分布式锁误删情况说明
      • 解决Redis分布式锁误删问题
      • 使用lua脚本解决分布式锁的原子性问题
    • 基于阻塞队列实现秒杀优化
    • Redis消息队列优化秒杀业务
    • 达人探店
    • 参考

本文是根据黑马程序员的视频课程 黑马程序员Redis入门到实战教程,深度透析redis底层原理+redis分布式锁+企业解决方案+黑马点评实战项目整理而来。
模仿大众点评的项目:

在这里插入图片描述

基于Redis实现短信登录

在这里插入图片描述

代码

    @Override
    public Result login(LoginFormDTO loginForm, HttpSession session) {
        //1. 校验手机号
        String phone = loginForm.getPhone();
        if (RegexUtils.isPhoneInvalid(phone)) {
            return Result.fail("手机号格式错误");
        }
        //2. 从redis获取验证码并校验
        String cacheCode = stringRedisTemplate.opsForValue().get(LOGIN_CODE_KEY + phone);
        String code = loginForm.getCode();
        if (cacheCode == null || !cacheCode.equals(code)){
            //3. 不一致,报错
            return Result.fail("验证码错误");
        }

        //4.一致,根据手机号查询用户
        User user = query().eq("phone", phone).one();

        //5. 判断用户是否存在
        if (user == null){
            //6. 不存在,创建新用户
            user = createUserWithPhone(phone);
        }

        //7.保存用户信息到redis
        // 7.1 随机生成token,作为登录令牌
        String token = UUID.randomUUID().toString(true);
        
        // 7.2 将User转为HashMap存储
        UserDTO userDTO = BeanUtil.copyProperties(user, UserDTO.class);
        Map<String, Object> userMap = BeanUtil.beanToMap(userDTO, new HashMap<>(),
                CopyOptions.create()
                        .setIgnoreNullValue(true)
                        .setFieldValueEditor((fieldName, fieldValue) -> fieldValue.toString()));

        // 7.3 存储
        String tokenKey = LOGIN_USER_KEY + token;
        stringRedisTemplate.opsForHash().putAll(tokenKey, userMap);

        // 7.4 设置token有效期
        stringRedisTemplate.expire(tokenKey, LOGIN_USER_TTL, TimeUnit.MINUTES);

        // 8. 返回token
        return Result.ok(token);
    }

在这里插入图片描述

商户查询缓存

在这里插入图片描述

防止缓存穿透(在缓存和数据库中都不存在的信息,多次查询,会给数据库带来压力),采用返回空值到redis的方案,下一次查询直接显示为空。还有一种方法是布隆过滤。

代码如下:

@Resource
    private StringRedisTemplate stringRedisTemplate;

    @Override
    public Result queryById(Long id) {
        String key = CACHE_SHOP_KEY + id;
        // 1. 从redis查询商户缓存
        String shopJson = stringRedisTemplate.opsForValue().get(key);
        // 2. 判断redis缓存中是否存在
        if (StrUtil.isNotBlank(shopJson)) {
            // 3. 存在,直接返回
            Shop shop = JSONUtil.toBean(shopJson, Shop.class); // Json数据转换为java对象
            return Result.ok(shop);
        }
        // 判断命中的是否是空值
        if (shopJson != null) {
            // 返回错误信息
            return  Result.fail("店铺不存在!");
        }


        // 4. 不存在,根据id查询数据库
        Shop shop = getById(id);
        // 5. 数据库中不存在,返回错误
        if (shop == null) {
            // 将空值写入redis
            stringRedisTemplate.opsForValue().set(key, "", CACHE_NULL_TTL, TimeUnit.MINUTES);
            // 返回错误信息
            return Result.fail("店铺不存在!");
        }
        // 6. 数据库中存在,写入redis
        stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(shop), CACHE_SHOP_TTL, TimeUnit.MINUTES);
        // 7. 返回
        return Result.ok(shop);
    }

店铺对应的数据存入redis中
在这里插入图片描述

Redis和Mysql数据库数据同步

根据id修改店铺时,先修改数据库,再删除缓存:我们确定了采用删除策略,来解决双写问题,当我们修改了数据之后,然后把缓存中的数据进行删除,查询时发现缓存中没有数据,则会从mysql中加载最新的数据,从而避免数据库和缓存不一致的问题

@Override
    @Transactional
    public Result update(Shop shop) {
        Long id = shop.getId();
        if (id == null) {
            return Result.fail("店铺id不能为空!");
        }

        // 1. 更新数据库
        updateById(shop);
        // 2. 删除缓存
        stringRedisTemplate.delete(CACHE_SHOP_KEY + shop.getId());


        return Result.ok();
    }

如果你在redis中都找不到,就说明你查看的不是热点数据啊,就直接返回你查看的热点不存在就行了,这个是根据业务场景来实现的,跟普通的击穿不一样的

优惠券秒杀

在这里插入图片描述

mysql数据库中tb_voucher优惠券的表:
在这里插入图片描述

实现优惠券秒杀的基本代码:

 @Resource
    private ISeckillVoucherService seckillVoucherService;

    @Resource
    private RedisIdWorker redisIdWorker;
    @Override
    @Transactional
    public Result seckillVoucher(Long voucherId) {
        // 1. 查询优惠券
        SeckillVoucher voucher = seckillVoucherService.getById(voucherId);
        // 2. 判断秒杀是否开始
        if (voucher.getBeginTime().isAfter(LocalDateTime.now())) {
            // 尚未开始
            return Result.fail("秒杀尚未开始!");
        }
        // 3. 判断秒杀是否结束
        if (voucher.getEndTime().isBefore(LocalDateTime.now())) {
            return Result.fail("秒杀已经开始!");
        }
        // 4. 判断库存是否充足
        if (voucher.getStock() < 1) {
            // 库存不足
            return Result.fail("库存不足!");
        }
        // 5. 扣减库存
        boolean success = seckillVoucherService.update()
                .setSql("stock = stock - 1")
                .eq("voucher_id", voucherId).update();
        if (!success) {
            // 库存不足
            return Result.fail("库存不足!");
        }
        // 6. 创建订单
        VoucherOrder voucherOrder = new VoucherOrder();
        // 6.1 订单id
        long orderId = redisIdWorker.nextId("order");
        voucherOrder.setId(orderId);
        // 6.2 用户id
        Long userId = UserHolder.getUser().getId();
        voucherOrder.setUserId(userId);
        // 6.3 代金券id
        voucherOrder.setVoucherId(voucherId);
        save(voucherOrder);

        // 7. 返回订单id
        return Result.ok(orderId);
    }

以上代码存在一人可以领取多个优惠券的情形,下面实现一人一单的功能。

一人一单

@Transactional
    public Result createVoucherOrder(Long voucherId) {
        // 5. 一人一单
        Long userId = UserHolder.getUser().getId();

        // 5.1 查询订单
        int count = query().eq("user_id", userId).eq("voucher_id", voucherId).count();
        // 5.2 判断是否存在
        if (count > 0) {
            // 用户已经购买过
            return Result.fail("用户已经购买过一次!");
        }

        // 6. 扣减库存
        boolean success = seckillVoucherService.update()
                .setSql("stock = stock - 1")  // set stock = stock - 1
                .eq("voucher_id", voucherId).gt("stock", 0) // where id = ? and stock > 0
                .update();
        if (!success) {
            // 库存不足
            return Result.fail("库存不足!");
        }

        // 7. 创建订单
        VoucherOrder voucherOrder = new VoucherOrder();
        // 7.1 订单id
        long orderId = redisIdWorker.nextId("order");
        voucherOrder.setId(orderId);
        // 7.2 用户id

        voucherOrder.setUserId(userId);
        // 7.3 代金券id
        voucherOrder.setVoucherId(voucherId);
        save(voucherOrder);

        // 8. 返回订单id
        return Result.ok(orderId);
    }

同时加锁,保证事务的特性,同时也控制了锁的粒度。这样可以解决单机情况下的一人一单安全问题,但是在集群模式下失效。

		Long userId = UserHolder.getUser().getId();

        synchronized (userId.toString().intern()) {
            // 获取代理对象(事务)
            IVoucherOrderService proxy = (IVoucherOrderService) AopContext.currentProxy();
            return proxy.createVoucherOrder(voucherId);
        }

有关锁失效原因分析

由于现在我们部署了多个tomcat,每个tomcat都有一个属于自己的jvm,那么假设在服务器A的tomcat内部,有两个线程,这两个线程由于使用的是同一份代码,那么他们的锁对象是同一个,是可以实现互斥的,但是如果现在是服务器B的tomcat内部,又有两个线程,但是他们的锁对象写的虽然和服务器A一样,但是锁对象却不是同一个,所以线程3和线程4可以实现互斥,但是却无法和线程1和线程2实现互斥,这就是 集群环境下,syn锁失效的原因,在这种情况下,我们就需要使用分布式锁来解决这个问题。

在这里插入图片描述

分布式锁

分布式锁:满足分布式系统或集群模式下多进程可见并且互斥的锁。

分布式锁的核心思想就是让大家都使用同一把锁,只要大家使用的是同一把锁,那么我们就能锁住线程,不让线程进行,让程序串行执行,这就是分布式锁的核心思路

在这里插入图片描述

基于Redis实现分布式锁:redis作为分布式锁是非常常见的一种使用方式,现在企业级开发中基本都使用redis或者zookeeper作为分布式锁,利用setnx这个方法,如果插入key成功,则表示获得到了锁,如果有人插入成功,其他人插入失败则表示无法获得到锁,利用这套逻辑来实现分布式锁

实现分布式锁时需要实现的两个基本方法:

  • 获取锁:

    • 互斥:确保只能有一个线程获取锁
    • 非阻塞:尝试一次,成功返回true,失败返回false
  • 释放锁:

    • 手动释放
    • 超时释放:获取锁时添加一个超时时间

SimpleRedisLock

利用setnx方法进行加锁,同时增加过期时间,防止死锁,此方法可以保证加锁和增加过期时间具有原子性

@Override
public boolean tryLock(long timeoutSec) {
    // 获取线程标示
    String threadId = ID_PREFIX + Thread.currentThread().getId();
    // 获取锁
    Boolean success = stringRedisTemplate.opsForValue()
            .setIfAbsent(KEY_PREFIX + name, threadId, timeoutSec, TimeUnit.SECONDS); //SETNX 实现互斥效果
    return Boolean.TRUE.equals(success);
}
public void unlock() {
    //通过del删除锁
    stringRedisTemplate.delete(KEY_PREFIX + name);
}

修改业务代码

  @Override
    public Result seckillVoucher(Long voucherId) {
        // 1.查询优惠券
        SeckillVoucher voucher = seckillVoucherService.getById(voucherId);
        // 2.判断秒杀是否开始
        if (voucher.getBeginTime().isAfter(LocalDateTime.now())) {
            // 尚未开始
            return Result.fail("秒杀尚未开始!");
        }
        // 3.判断秒杀是否已经结束
        if (voucher.getEndTime().isBefore(LocalDateTime.now())) {
            // 尚未开始
            return Result.fail("秒杀已经结束!");
        }
        // 4.判断库存是否充足
        if (voucher.getStock() < 1) {
            // 库存不足
            return Result.fail("库存不足!");
        }
        Long userId = UserHolder.getUser().getId();
        //创建锁对象(新增代码)
        SimpleRedisLock lock = new SimpleRedisLock("order:" + userId, stringRedisTemplate);
        //获取锁对象
        boolean isLock = lock.tryLock(1200);
		//加锁失败
        if (!isLock) {
            return Result.fail("不允许重复下单");
        }
        try {
            //获取代理对象(事务)
            IVoucherOrderService proxy = (IVoucherOrderService) AopContext.currentProxy();
            return proxy.createVoucherOrder(voucherId);
        } finally {
            //释放锁
            lock.unlock();
        }
    }

Redis分布式锁误删情况说明

持有锁的线程在锁的内部出现了阻塞,导致他的锁自动释放,这时其他线程,线程2来尝试获得锁,就拿到了这把锁,然后线程2在持有锁执行过程中,线程1反应过来,继续执行,而线程1执行过程中,走到了删除锁逻辑,此时就会把本应该属于线程2的锁进行删除,这就是误删别人锁的情况说明

解决方案:解决方案就是在每个线程释放锁的时候,去判断一下当前这把锁是否属于自己,如果属于自己,则不进行锁的删除,假设还是上边的情况,线程1卡顿,锁自动释放,线程2进入到锁的内部执行逻辑,此时线程1反应过来,然后删除锁,但是线程1,一看当前这把锁不是属于自己,于是不进行删除锁逻辑,当线程2走到删除锁逻辑时,如果没有卡过自动释放锁的时间点,则判断当前这把锁是属于自己的,于是删除这把锁。

解决Redis分布式锁误删问题

需求:修改之前的分布式锁实现,满足:在获取锁时存入线程标示(用UUID + 线程id表示)
在释放锁时先获取锁中的线程标示,判断是否与当前线程标示一致

  • 如果一致则释放锁
  • 如果不一致则不释放锁

核心逻辑:在存入锁时,放入自己线程的标识,在删除锁时,判断当前这把锁的标识是不是自己存入的,如果是,则进行删除,如果不是,则不进行删除。

uuid用来区分jvm的,jvm内部用线程id区分

具体代码如下:加锁

private static final String ID_PREFIX = UUID.randomUUID().toString(true) + "-";
@Override
public boolean tryLock(long timeoutSec) {
   // 获取线程标示
   String threadId = ID_PREFIX + Thread.currentThread().getId();
   // 获取锁
   Boolean success = stringRedisTemplate.opsForValue()
                .setIfAbsent(KEY_PREFIX + name, threadId, timeoutSec, TimeUnit.SECONDS);
   return Boolean.TRUE.equals(success);
}

释放锁

public void unlock() {
    // 获取线程标示
    String threadId = ID_PREFIX + Thread.currentThread().getId();
    // 获取锁中的标示
    String id = stringRedisTemplate.opsForValue().get(KEY_PREFIX + name);
    // 判断标示是否一致
    if(threadId.equals(id)) {
        // 释放锁
        stringRedisTemplate.delete(KEY_PREFIX + name);
    }
}

使用lua脚本解决分布式锁的原子性问题

释放锁的lua脚本如下:unlock.lua

-- 这里的 KEYS[1] 就是锁的key,这里的ARGV[1] 就是当前线程标示
-- 获取锁中的标示,判断是否与当前线程标示一致
if (redis.call('GET', KEYS[1]) == ARGV[1]) then
  -- 一致,则删除锁
  return redis.call('DEL', KEYS[1])
end
-- 不一致,则直接返回
return 0

我们的RedisTemplate中,可以利用execute方法去执行lua脚本

private static final DefaultRedisScript<Long> UNLOCK_SCRIPT;
    static {
        UNLOCK_SCRIPT = new DefaultRedisScript<>();
        UNLOCK_SCRIPT.setLocation(new ClassPathResource("unlock.lua"));
        UNLOCK_SCRIPT.setResultType(Long.class);
    }

@Override
public void unlock() {
    // 调用lua脚本
    stringRedisTemplate.execute(
            UNLOCK_SCRIPT,
            Collections.singletonList(KEY_PREFIX + name),
            ID_PREFIX + Thread.currentThread().getId());
}

基于阻塞队列实现秒杀优化

秒杀优化-异步秒杀思路

我们来回顾一下下单流程

当用户发起请求,此时会请求nginx,nginx会访问到tomcat,而tomcat中的程序,会进行串行操作,分成如下几个步骤

1、查询优惠卷

2、判断秒杀库存是否足够

3、查询订单

4、校验是否是一人一单

5、扣减库存

6、创建订单

在这六步操作中,又有很多操作是要去操作数据库的,而且还是一个线程串行执行, 这样就会导致我们的程序执行的很慢,所以我们需要异步程序执行,那么如何加速呢?

在这里插入图片描述

需求:

  • 新增秒杀优惠券的同时,将优惠券信息保存到Redis中

  • 基于Lua脚本,判断秒杀库存、一人一单,决定用户是否抢购成功

  • 如果抢购成功,将优惠券id和用户id封装后存入阻塞队列

  • 开启线程任务,不断从阻塞队列中获取信息,实现异步下单功能

在这里插入图片描述

秒杀优化-基于阻塞队列实现秒杀优化

seckill.lua文件,实现上图中的逻辑

-- 1.参数列表
-- 1.1.优惠券id
local voucherId = ARGV[1]
-- 1.2.用户id
local userId = ARGV[2]

-- 2.数据key
-- 2.1.库存key
local stockKey = 'seckill:stock:' .. voucherId
-- 2.2.订单key
local orderKey = 'seckill:order:' .. voucherId

-- 3.脚本业务
-- 3.1.判断库存是否充足 get stockKey
if(tonumber(redis.call('get', stockKey)) <= 0) then
    -- 3.2.库存不足,返回1
    return 1
end
-- 3.2.判断用户是否下单 SISMEMBER orderKey userId
if(redis.call('sismember', orderKey, userId) == 1) then
    -- 3.3.存在,说明是重复下单,返回2
    return 2
end
-- 3.4.扣库存 incrby stockKey -1
redis.call('incrby', stockKey, -1)
-- 3.5.下单(保存用户)sadd orderKey userId
redis.call('sadd', orderKey, userId)
return 0

VoucherOrderServiceImpl

修改下单动作,现在我们去下单时,是通过lua表达式去原子执行判断逻辑,如果判断我出来不为0 ,则要么是库存不足,要么是重复下单,返回错误信息,如果是0,则把下单的逻辑保存到队列中去,然后异步执行

//异步处理线程池
private static final ExecutorService SECKILL_ORDER_EXECUTOR = Executors.newSingleThreadExecutor();

//在类初始化之后执行,因为当这个类初始化好了之后,随时都是有可能要执行的
@PostConstruct
private void init() {
   SECKILL_ORDER_EXECUTOR.submit(new VoucherOrderHandler());
}
// 用于线程池处理的任务
// 当初始化完毕后,就会去从队列中去拿信息
 	private class VoucherOrderHandler implements Runnable{

        @Override
        public void run() {
            while (true){
                try {
                    // 1.获取队列中的订单信息
                    VoucherOrder voucherOrder = orderTasks.take();
                    // 2.创建订单
                    handleVoucherOrder(voucherOrder);
                } catch (Exception e) {
                    log.error("处理订单异常", e);
                }
          	 }
        }
     
    private void handleVoucherOrder(VoucherOrder voucherOrder) {
            //1.获取用户
            Long userId = voucherOrder.getUserId();
            // 2.创建锁对象
            RLock redisLock = redissonClient.getLock("lock:order:" + userId);
            // 3.尝试获取锁
            boolean isLock = redisLock.lock();
            // 4.判断是否获得锁成功
            if (!isLock) {
                // 获取锁失败,直接返回失败或者重试
                log.error("不允许重复下单!");
                return;
            }
            try {
				//注意:由于是spring的事务是放在threadLocal中,此时的是多线程,事务会失效
                proxy.createVoucherOrder(voucherOrder);
            } finally {
                // 释放锁
                redisLock.unlock();
            }
    }
    
	private BlockingQueue<VoucherOrder> orderTasks =new  ArrayBlockingQueue<>(1024 * 1024);

    @Override
    public Result seckillVoucher(Long voucherId) {
        Long userId = UserHolder.getUser().getId();
        long orderId = redisIdWorker.nextId("order");
        // 1.执行lua脚本
        Long result = stringRedisTemplate.execute(
                SECKILL_SCRIPT,
                Collections.emptyList(),
                voucherId.toString(), userId.toString(), String.valueOf(orderId)
        );
        int r = result.intValue();
        // 2.判断结果是否为0
        if (r != 0) {
            // 2.1.不为0 ,代表没有购买资格
            return Result.fail(r == 1 ? "库存不足" : "不能重复下单");
        }
        VoucherOrder voucherOrder = new VoucherOrder();
        // 2.3.订单id
        long orderId = redisIdWorker.nextId("order");
        voucherOrder.setId(orderId);
        // 2.4.用户id
        voucherOrder.setUserId(userId);
        // 2.5.代金券id
        voucherOrder.setVoucherId(voucherId);
        // 2.6.放入阻塞队列
        orderTasks.add(voucherOrder);
        //3.获取代理对象
        proxy = (IVoucherOrderService)AopContext.currentProxy();
        //4.返回订单id
        return Result.ok(orderId);
    }
     
      @Transactional
    public  void createVoucherOrder(VoucherOrder voucherOrder) {
        Long userId = voucherOrder.getUserId();
        // 5.1.查询订单
        int count = query().eq("user_id", userId).eq("voucher_id", voucherOrder.getVoucherId()).count();
        // 5.2.判断是否存在
        if (count > 0) {
            // 用户已经购买过了
           log.error("用户已经购买过了");
           return ;
        }

        // 6.扣减库存
        boolean success = seckillVoucherService.update()
                .setSql("stock = stock - 1") // set stock = stock - 1
                .eq("voucher_id", voucherOrder.getVoucherId()).gt("stock", 0) // where id = ? and stock > 0
                .update();
        if (!success) {
            // 扣减失败
            log.error("库存不足");
            return ;
        }
        save(voucherOrder);
 
    }

秒杀业务的优化思路是什么?

  • 先利用Redis完成库存余量、一人一单判断,完成抢单业务
  • 再将下单业务放入阻塞队列,利用独立线程异步下单
  • 基于阻塞队列的异步秒杀存在哪些问题?
    • 内存限制问题
    • 数据安全问题

Redis消息队列优化秒杀业务

什么是消息队列:字面意思就是存放消息的队列。最简单的消息队列模型包括3个角色:

  • 消息队列:存储和管理消息,也被称为消息代理(Message Broker)
  • 生产者:发送消息到消息队列
  • 消费者:从消息队列获取消息并处理消息

基于Redis的Stream结构作为消息队列,实现异步秒杀下单

需求:

  • 创建一个Stream类型的消息队列,名为stream.orders
  • 修改之前的秒杀下单Lua脚本,在认定有抢购资格后,直接向stream.orders中添加消息,内容包含voucherId、userId、orderId
  • 项目启动时,开启一个线程任务,尝试获取stream.orders中的消息,完成下单
127.0.0.1:6379> XGROUP CREATE stream.orders g1 0 MKSTREAM
OK

在这里插入图片描述

seckill.lua脚本中添加发送到消息队列的内容

-- 1.参数列表
-- 1.1.优惠券id
local voucherId = ARGV[1]
-- 1.2.用户id
local userId = ARGV[2]
-- 1.3.订单id
local orderId = ARGV[3]

-- 2.数据key
-- 2.1.库存key
local stockKey = 'seckill:stock:' .. voucherId
-- 2.2.订单key
local orderKey = 'seckill:order:' .. voucherId

-- 3.脚本业务
-- 3.1.判断库存是否充足 get stockKey
if(tonumber(redis.call('get', stockKey)) <= 0) then
    -- 3.2.库存不足,返回1
    return 1
end
-- 3.2.判断用户是否下单 SISMEMBER orderKey userId
if(redis.call('sismember', orderKey, userId) == 1) then
    -- 3.3.存在,说明是重复下单,返回2
    return 2
end
-- 3.4.扣库存 incrby stockKey -1
redis.call('incrby', stockKey, -1)
-- 3.5.下单(保存用户)sadd orderKey userId
redis.call('sadd', orderKey, userId)
-- 3.6.发送消息到队列中, XADD stream.orders * k1 v1 k2 v2 ...
redis.call('xadd', 'stream.orders', '*', 'userId', userId, 'voucherId', voucherId, 'id', orderId)
return 0

VoucherOrderServiceImpl

private class VoucherOrderHandler implements Runnable {

    @Override
    public void run() {
        while (true) {
            try {
                // 1.获取消息队列中的订单信息 XREADGROUP GROUP g1 c1 COUNT 1 BLOCK 2000 STREAMS s1 >
                List<MapRecord<String, Object, Object>> list = stringRedisTemplate.opsForStream().read(
                    Consumer.from("g1", "c1"),
                    StreamReadOptions.empty().count(1).block(Duration.ofSeconds(2)),
                    StreamOffset.create("stream.orders", ReadOffset.lastConsumed())
                );
                // 2.判断订单信息是否为空
                if (list == null || list.isEmpty()) {
                    // 如果为null,说明没有消息,继续下一次循环
                    continue;
                }
                // 解析数据
                MapRecord<String, Object, Object> record = list.get(0);
                Map<Object, Object> value = record.getValue();
                VoucherOrder voucherOrder = BeanUtil.fillBeanWithMap(value, new VoucherOrder(), true);
                // 3.创建订单
                createVoucherOrder(voucherOrder);
                // 4.确认消息 XACK
                stringRedisTemplate.opsForStream().acknowledge("s1", "g1", record.getId());
            } catch (Exception e) {
                log.error("处理订单异常", e);
                //处理异常消息
                handlePendingList();
            }
        }
    }

    private void handlePendingList() {
        while (true) {
            try {
                // 1.获取pending-list中的订单信息 XREADGROUP GROUP g1 c1 COUNT 1 BLOCK 2000 STREAMS s1 0
                List<MapRecord<String, Object, Object>> list = stringRedisTemplate.opsForStream().read(
                    Consumer.from("g1", "c1"),
                    StreamReadOptions.empty().count(1),
                    StreamOffset.create("stream.orders", ReadOffset.from("0"))
                );
                // 2.判断订单信息是否为空
                if (list == null || list.isEmpty()) {
                    // 如果为null,说明没有异常消息,结束循环
                    break;
                }
                // 解析数据
                MapRecord<String, Object, Object> record = list.get(0);
                Map<Object, Object> value = record.getValue();
                VoucherOrder voucherOrder = BeanUtil.fillBeanWithMap(value, new VoucherOrder(), true);
                // 3.创建订单
                createVoucherOrder(voucherOrder);
                // 4.确认消息 XACK
                stringRedisTemplate.opsForStream().acknowledge("s1", "g1", record.getId());
            } catch (Exception e) {
                log.error("处理pendding订单异常", e);
                try{
                    Thread.sleep(20);
                }catch(Exception e){
                    e.printStackTrace();
                }
            }
        }
    }
}

达人探店

发布探店笔记

探店笔记类似点评网站的评价,往往是图文结合。对应的表有两个:
tb_blog:探店笔记表,包含笔记中的标题、文字、图片等
tb_blog_comments:其他用户对探店笔记的评价

在这里插入图片描述

上传接口

@Slf4j
@RestController
@RequestMapping("upload")
public class UploadController {

    @PostMapping("blog")
    public Result uploadImage(@RequestParam("file") MultipartFile image) {
        try {
            // 获取原始文件名称
            String originalFilename = image.getOriginalFilename();
            // 生成新文件名
            String fileName = createNewFileName(originalFilename);
            // 保存文件
            image.transferTo(new File(SystemConstants.IMAGE_UPLOAD_DIR, fileName));
            // 返回结果
            log.debug("文件上传成功,{}", fileName);
            return Result.ok(fileName);
        } catch (IOException e) {
            throw new RuntimeException("文件上传失败", e);
        }
    }

}

点赞功能

需求:

  • 同一个用户只能点赞一次,再次点击则取消点赞
  • 如果当前用户已经点赞,则点赞按钮高亮显示(前端已实现,判断字段Blog类的isLike属性)

实现步骤:

  • 给Blog类中添加一个isLike字段,标示是否被当前用户点赞
  • 修改点赞功能,利用Redis的set集合判断是否点赞过,未点赞过则点赞数+1,已点赞过则点赞数-1
  • 修改根据id查询Blog的业务,判断当前登录用户是否点赞过,赋值给isLike字段
  • 修改分页查询Blog业务,判断当前登录用户是否点赞过,赋值给isLike字段

在这里插入图片描述

在探店笔记的详情页面,应该把给该笔记点赞的人显示出来,比如最早点赞的TOP5,形成点赞排行榜:

之前的点赞是放到set集合,但是set集合是不能排序的,所以这个时候,咱们可以采用一个可以排序的set集合,就是咱们的sortedSet

具体步骤:

1、在Blog 添加一个字段

@TableField(exist = false)
private Boolean isLike;

2、修改代码

   @Override
    public Result likeBlog(Long id) {
        // 1.获取登录用户
        Long userId = UserHolder.getUser().getId();
        // 2.判断当前登录用户是否已经点赞
        String key = BLOG_LIKED_KEY + id;
        Double score = stringRedisTemplate.opsForZSet().score(key, userId.toString());
        if (score == null) {
            // 3.如果未点赞,可以点赞
            // 3.1.数据库点赞数 + 1
            boolean isSuccess = update().setSql("liked = liked + 1").eq("id", id).update();
            // 3.2.保存用户到Redis的set集合  zadd key value score
            if (isSuccess) {
                stringRedisTemplate.opsForZSet().add(key, userId.toString(), System.currentTimeMillis());
            }
        } else {
            // 4.如果已点赞,取消点赞
            // 4.1.数据库点赞数 -1
            boolean isSuccess = update().setSql("liked = liked - 1").eq("id", id).update();
            // 4.2.把用户从Redis的set集合移除
            if (isSuccess) {
                stringRedisTemplate.opsForZSet().remove(key, userId.toString());
            }
        }
        return Result.ok();
    }


    private void isBlogLiked(Blog blog) {
        // 1.获取登录用户
        UserDTO user = UserHolder.getUser();
        if (user == null) {
            // 用户未登录,无需查询是否点赞
            return;
        }
        Long userId = user.getId();
        // 2.判断当前登录用户是否已经点赞
        String key = "blog:liked:" + blog.getId();
        Double score = stringRedisTemplate.opsForZSet().score(key, userId.toString());
        blog.setIsLike(score != null);
    }

BlogService

@Override
public Result queryBlogLikes(Long id) {
    String key = BLOG_LIKED_KEY + id;
    // 1.查询top5的点赞用户 zrange key 0 4
    Set<String> top5 = stringRedisTemplate.opsForZSet().range(key, 0, 4);
    if (top5 == null || top5.isEmpty()) {
        return Result.ok(Collections.emptyList());
    }
    // 2.解析出其中的用户id
    List<Long> ids = top5.stream().map(Long::valueOf).collect(Collectors.toList());
    String idStr = StrUtil.join(",", ids);
    // 3.根据用户id查询用户 WHERE id IN ( 5 , 1 ) ORDER BY FIELD(id, 5, 1)
    List<UserDTO> userDTOS = userService.query()
            .in("id", ids).last("ORDER BY FIELD(id," + idStr + ")").list()
            .stream()
            .map(user -> BeanUtil.copyProperties(user, UserDTO.class))
            .collect(Collectors.toList());
    // 4.返回
    return Result.ok(userDTOS);
}

点赞排行榜显示

在这里插入图片描述

参考

[1] https://www.bilibili.com/video/BV1cr4y1671t?p=1&vd_source=c3b6e654ba39ea63bbf8fe47e7e98899

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1306561.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

利用transition-group标签包裹li标签,实现输入数据后按Enter键将数据添加到列表中

1.效果图 2.代码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title></title><script src"https://cdn.bootcdn.net/ajax/libs/vue/2.3.0/vue.js"></script><div id&quo…

C#基础——语法学习

C#的基本语法 在介绍基本语法之前我们先来大概讲一下创建好的这些文件都是做什么的 .sln文件&#xff1a;将项目和解决方案项结合到一起 .vs文件夹&#xff1a;用来存储当前解决方案中关于用户的设置和自定义项&#xff0c;比如断点&#xff0c;主题等。&#xff08;一般都将其…

Swin UNetR:把 UNet 和 Swin Transformer 结合

Swin UNetR&#xff1a;把 UNet 和 Swin Transformer 结合 网络结构使用指南 前置知识&#xff1a;Swin Transformer&#xff1a;将卷积网络和 Transformer 结合 Swin UNetR 结合 Swin Transformer 的上下文建模能力和 U-Net 的像素级别预测能力&#xff0c;提高语义分割任务的…

2010年全国地质灾害隐患点数据,shp/excel格式,含灾害类型、等级、经纬度坐标等字段

基本信息. 数据名称: 全国地质灾害隐患点数据 数据格式: Shp、Excel 数据时间: 2010年 数据几何类型: 点 数据坐标系: WGS84坐标系 数据来源&#xff1a;网络公开数据 数据字段&#xff1a; 序号字段名称字段说明1xzqhdm行政区划代码2xzqhmc行政区划名称3mc名称4z…

Halcon一维码识别

文章目录 参数连接halcon 自带案例1&#xff08;设置校验位识别条码&#xff09;Halcon 自带案例2&#xff08;设置对比度识别条码&#xff09;Halcon 自带案例3&#xff08;存在曲面变形&#xff09;Halcon 自带案例4&#xff08;设置条码扫描线&#xff09;Halcon 自带案例5&…

HarmonyOS第一课ArkTS开发语言(TypeScript快速入门)

编程语言介绍 ArkTS是HarmonyOS优选的主力应用开发语言。它在TypeScript&#xff08;简称TS&#xff09;的基础上&#xff0c;匹配ArkUI框架&#xff0c;扩展了声明式UI、状态管理等相应的能力&#xff0c;让开发者以更简洁、更自然的方式开发跨端应用。要了解什么是ArkTS&…

解决设备维修管理问题,易点易动来帮忙!

设备维修管理常常存在一些问题&#xff0c;给企业带来不便和困扰&#xff1a; 1&#xff09;维修信息不及时准确&#xff0c;导致维修延误或错过重要维护时机&#xff1b; 2&#xff09;纸质记录容易丢失或难以管理&#xff0c;使得维修历史不完整&#xff1b; 3&#xff09…

MISC之LSB

LSB隐写 简介 LSB隐写&#xff08;Least Significant Bit Steganography&#xff09;是一种隐写术&#xff0c;它通过将秘密信息嵌入到图像、音频或视频等多媒体文件中的最低有效位中来隐藏信息。在数字图像中&#xff0c;每个像素由红、绿、蓝三个通道的颜色值组成。每个颜色…

c语言插入排序算法(详解)

插入排序是一种简单直观的排序算法&#xff0c;其主要思想是将一个待排序的元素插入到已经排好序的部分的合适位置。 插入排序的原理如下&#xff1a; 将序列分为两部分&#xff1a;已排序部分和未排序部分。初始时&#xff0c;已排序部分只包含第一个元素&#xff0c;未排序…

Unity 射线检测(Raycast)检测图层(LayerMask)的设置

目录 主要内容 拓展&#xff1a; 主要内容 Raycast函数有很多重载(函数的重载根据函数的参数来决定) 这里只涉及这个重载,其余重载可以很方便得在Visual Studio中看源码获取&#xff1b; public static bool Raycast(Vector3 origin, Vector3 direction, out RaycastHit hit…

成绩统计(oj题)

一道考验细节的题 最后是&#xff1f;&#xff1a;运算符用错了 代码如下&#xff1a; #include<stdio.h> #include<string.h> typedef struct Grade{int num;int inv; }Grade; Grade tmp[10]; int n, m, g, interval[10] {0};int main(void) {scanf("%d%d…

智能优化算法应用:基于鸟群算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于鸟群算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于鸟群算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.鸟群算法4.实验参数设定5.算法结果6.参考文献7.MA…

Vue3-15-事件处理的基本使用详解

什么是事件处理 事件处理 &#xff1a; 就是对页面上的事件进行捕获并进行逻辑上的处理。 例如 &#xff1a; 点击了一个按钮&#xff0c;捕获点击事件&#xff0c;并进行响应的逻辑处理。vue3中的事件处理的语法 主要使用到的是 v-on 指令&#xff0c; 这个指令的语法糖&…

【教程】如何将重要文件进行混淆和加密

怎么保护苹果手机移动应用程序ipa中文件安全&#xff1f; ios应用程序存储一些图片&#xff0c;资源&#xff0c;配置信息&#xff0c;甚至敏感数据如用户信息、证书、私钥等。这些数据怎么保护呢&#xff1f;可以使用iOS提供的Keychain来保护敏感数据&#xff0c;也可以使用加…

机器学习---TF-IDF算法

1、TF-IDF TF-IDF(Term Frequency-Inverse Document Frequency, 词频-逆文本频率)。TF指词频&#xff0c;IDF指的是逆文本频率。TF-IDF是一种用于信息检索与数据挖掘的常用加权技术&#xff0c;可以评估一个词在一个文件集或者一个语料库中对某个文件的重要程度。一个词语在一篇…

创邻科技上榜中国信通院《高质量数字化转型产品及服务全景图》

近年来&#xff0c;数字化转型浪潮浩浩荡荡&#xff0c;已成为企业高质量发展的必由之路。 但是企业的数字化转型之路并不简单。一方面&#xff0c;企业对数字化转型仍面临着“战略缺位”“能力难建”“价值难现”等问题&#xff1b;另一方面&#xff0c;市场上众多的数字化转…

Day58力扣打卡

打卡记录 下一个更大元素 IV&#xff08;单调栈 x2&#xff09; 链接 class Solution:def secondGreaterElement(self, nums: List[int]) -> List[int]:ans [-1] * len(nums)s []t []for i, x in enumerate(nums):while t and nums[t[-1]] < x:ans[t.pop()] x # t…

班主任,再也不愁怎么给学生发成绩了

作为班主任&#xff0c;我们时常面临着如何有效地将学生的成绩信息传达给家长的问题。传统的纸质成绩单邮寄方式不仅效率低下&#xff0c;而且容易丢失&#xff0c;难以保证信息的及时性和准确性。现在&#xff0c;有了微信「群发成绩」小程序&#xff0c;班主任们终于可以摆脱…

ISP去噪(2)_np 噪声模型

#灵感# ISP 中的去噪&#xff0c;都需要依赖一个噪声模型。很多平台上使用采集的raw进行calibration&#xff0c;可以输出这个模型&#xff0c;通常称为 noise profile。 目录 名词解释&#xff1a; 标定方法&#xff1a; 校准出的noise profile: noise profile 作用域&am…

异常当做业务逻辑处理严重影响性能

一:背景 在项目应该或多或少的见过有人把异常当做业务逻辑处理的情况(┬_┬),比如说判断一个数字是否为整数,就想当然的用try catch包起来,再进行 int.Parse,如果抛异常就说明不是整数,简单粗暴,也不需要写正则或者其他逻辑,再比如一个字符串强制转化为Enum,直接用Enu…