多维时序 | MATLAB实现BWO-CNN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测

news2024/11/23 21:28:11

多维时序 | MATLAB实现BWO-CNN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测

目录

    • 多维时序 | MATLAB实现BWO-CNN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述

4

6
7
8
9

基本介绍

MATLAB实现BWO-CNN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测。

模型描述

MATLAB实现BWO-CNN-BiGRU-Multihead-Attention白鲸算法优化结合卷积神经网络 (CNN) 和双向门控循环单元 (BiGRU融合多头自注意力机制的多变量时间序列预测,用于处理时间序列数据;适用平台:Matlab 2023及以上
1.data为数据集,格式为excel,4个输入特征,1个输出特征,考虑历史特征的影响,多变量时间序列预测;
2.主程序文件,运行即可;
3.命令窗口输出R2、MAE、MAPE、MSE和MBE,可在下载区获取数据和程序内容;
注意程序和数据放在一个文件夹,运行环境为Matlab2023b及以上。
适用领域:风速预测、光伏功率预测、发电功率预测、碳价预测等多种应用。 BWO 白鲸优化算法,于2022年发表在SCI、中科院1区期刊《Knowledge-Based Systems》上。

多头自注意力机制使得模型能够更灵活地对不同时间步的输入信息进行加权。这有助于模型更加集中地关注对预测目标有更大影响的时间点。​自注意力机制还有助于处理时间序列中长期依赖关系,提高了模型在预测时对输入序列的全局信息的感知。CNN可以用于提取时间序列数据中的局部特征。通过使用卷积层和池化层,CNN可以捕捉到时间序列中的空间和时间依赖关系。卷积层可以识别不同频率的模式,而池化层可以减少特征维度并保留最重要的信息。
接下来,使用双向门控循环单元(BiGRU)来学习时间序列数据中的长期依赖性。BiGRU结构可以同时考虑过去和未来的信息,从而更好地捕捉时间序列中的动态模式。通过双向结构,模型可以利用过去和未来的上下文信息来进行更准确的预测。
最后,引入多头自注意力机制,可以进一步提高模型的性能。自注意力机制允许模型自动学习时间序列数据中不同位置的重要性权重,从而更好地关注关键的时间步。多头自注意力机制可以并行地学习多个不同的注意力权重,以捕捉不同的关注点。
通过将CNN、BiGRU和多头自注意力机制结合起来,可以构建一个强大的模型,用于雪消融的多变量时间序列预测。模型可以同时考虑局部特征、长期依赖性和重要性权重,从而提高预测的准确性。

在这里插入图片描述

程序设计

  • 完整程序和数据获取方式1:同等价值程序兑换;
  • 完整程序和数据获取方式2:私信博主回复MATLAB实现BWO-CNN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测获取。

%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度
%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/130471154

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1306226.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Unity中实现ShaderToy卡通火(原理实现篇)

文章目录 前言一、我们在片元着色器中,实现卡通火的大体框架1、使用 noise 和 _CUTOFF 判断作为显示火焰的区域2、_CUTOFF : 用于裁剪噪波范围的三角形3、noise getNoise(uv, t); : 噪波函数 二、顺着大体框架依次解析具体实现的功能1、 uv.x * 4.0; : …

基于深度学习的课堂举手人数统计系统

1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 研究背景与意义 随着信息技术的快速发展,教育领域也逐渐开始应用新技术来改善教学质量和效果。在传统的课堂教学中,教师通常需要手动记录学生的举手情况&…

集合03 Collection (List) - Java

List ArrayListArrayList注意事项ArrayList底层操作机制-源码分析(重点) VectorVector基本介绍 ——Vector和ArrayList比较Vector底层结构和源码分析 LinkedList基本介绍LinkedList的底层结构和操作机制LinkedList的增删改查 ——LinkedList和ArrayList比…

用CHAT 写农业产品管理制度

问CHAT:茶叶种植基地农业投入品管理制度 CHAT回复:茶业种植基地农业投入品管理制度是规范茶叶种植管理、保证产品质量与安全,提升作物生产效益的重要环节。 以下是对于茶叶种植基地农业投入品管理制度的一些基本措施建议: 1. 投…

C# 使用异步委托获取线程返回值

写在前面 异步委托主要用于解决 ThreadPool.QueueUserWorkItem 没有提供获取线程执行完成后的返回值问题。异步委托只能在.Net Framework 框架下使用,.Net Core中会报平台错误,而且使用Task.Result来获取返回值,可以达成同样的目的&#xff…

Android--Jetpack--数据库Room详解一

人生何须万种愁,千里云烟一笑收 一,定义 Room也是一个ORM框架,它在SQLite上提供了一个抽象层,屏蔽了部分底层的细节,使用对象对数据库进行操作,进行CRUD就像对象调用方法一样的简单。 二,角色介…

靠谱的车- 华为OD统一考试(C卷)

靠谱的车- 华为OD统一考试(C卷) OD统一考试(C卷) 分值: 100分 题解: Java / Python / C 题目描述 程序员小明打了一辆出租车去上班。出于职业敏感,他注意到这辆出租车的计费表有点问题&#xf…

HTML+CSS高频面试题

面试题目录 前言1.讲一下盒模型,普通盒模型和怪异盒模型有什么区别2.CSS如何实现居中3.讲一下flex弹性盒布局4.CSS常见的选择器有哪些?优先级5.长度单位px 、em、rem的区别6.position属性的值有哪些7.display属性的值有哪些,分别有什么作用8.…

TCP/IP详解——IP协议,IP选路

文章目录 1. IP 编址1.1 IP 报文头部1.2 进制之间的转换1.3 网络通信1.4 有类 IP 编制的缺陷1.5 变长子网掩码1.6 网关1.7 IP 包分片1.7.1 IP 包分片实例1.7.2 IP 分片注意事项1.7.3 Wireshark 抓取 IP 包分片1.7.4 OmniPeek 抓取 IP 包分片1.7.5 ICMP 不可达差错(需…

【生物信息学】scRNA-seq数据分析(一):质控~细胞筛选~高表达基因筛选

文章目录 一、实验介绍二、实验环境1. 配置虚拟环境2. 库版本介绍 三、实验内容0. 导入必要的库1. 质控2. 细胞筛选3. 高表达基因筛选 一、实验介绍 质控~ 细胞筛选 ~高表达基因筛选 二、实验环境 1. 配置虚拟环境 可使用如下指令: conda create -n bio python3.…

bugku--社工-初步收集

打开是这么个东西 下面的刷钻软件可以下载 御剑扫一下目录,发现个登录界面 打开刷钻软件抓个包看一下 发现这么两条数据 user 和 pass base64 解码 user:Username: YnVna3VrdUAxNjMuY29t pass:Password: WFNMUk9DUE1OV1daUURaTA 解码发现是163的邮箱账号密码 登…

Vulnhub-DC-2 靶机复现完整过程

环境准备: kali: NAT模式 网段 :192.168.200.0 DC-2: NAT模式 网段 :192.168.200.0 保证靶机和攻击机在一个网段上 信息收集 收集同网段存货主机IP地址 nmap -sP ip地址 arp-scan -l显示错误页面,显然是重定向错误&#xff0c…

独立完成软件的功能的测试(2)

独立完成软件的功能的测试(2) (12.13) 1. 对穷举场景设计测试点(等价类划分法) 等价类划分法的概念: 说明:数据有共同特征,成功失败分类: 有效&#xff1a…

CSS的三大特性(层叠性、继承性、优先级---------很重要)

CSS 有三个非常重要的三个特性:层叠性、继承性、优先级。 层叠性 场景:相同选择器给设置相同的样式,此时一个样式就会覆盖(层叠)另一个冲突的样式。层叠性主要解决样式冲突 的问题 原则:  样式冲突&am…

如何从eureka-server上进行服务发现,负载均衡远程调用服务

在spring cloud的maven的pom文件中添加eureka-client的依赖坐标 <!--eureka-client依赖--><dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-starter-netflix-eureka-client</artifactId></dependen…

Linux(20):软件安装:原始码与 Tarball

开放源码的软件安装与升级 在Windows系统上面的软件都是一模一样的&#xff0c;【无法修改该软件的源代码】&#xff0c;因此&#xff0c;万一想要增加或者减少该软件的某些功能时&#xff0c;无能为力。。。 Linux 上面的软件几乎都是经过 GPL 的授权&#xff0c;所以每个软件…

99基于matlab的小波分解和小波能量熵函数

基于matlab的小波分解和小波能量熵函数&#xff0c;通过GUI界面导入西储大学轴承故障数据&#xff0c;以可视化的图对结果进行展现。数据可更换自己的&#xff0c;程序已调通&#xff0c;可直接运行。 99小波分解和小波能量熵函数 (xiaohongshu.com)https://www.xiaohongshu.co…

提升数据可视化:拖拽编辑自动汇总,树形数据表格展示新方式

本文由葡萄城技术团队发布。转载请注明出处&#xff1a;葡萄城官网&#xff0c;葡萄城为开发者提供专业的开发工具、解决方案和服务&#xff0c;赋能开发者。 前言 树形结构是一种非常常见的数据结构&#xff0c;它由一组以层次关系排列的节点组成。树的结构类似于自然界中的一…

如何使用内网穿透实现iStoreOS软路由R4S公网远程访问局域网电脑桌面

最近&#xff0c;我发现了一个超级强大的人工智能学习网站。它以通俗易懂的方式呈现复杂的概念&#xff0c;而且内容风趣幽默。我觉得它对大家可能会有所帮助&#xff0c;所以我在此分享。点击这里跳转到网站。 文章目录 简介一、配置远程桌面公网地址二、家中使用永久固定地址…

【数据库】基于有效性确认的并发访问控制原理及调度流程,乐观无锁模式,冲突较少下的最优模型

使用有效性确认的并发控制 ​专栏内容&#xff1a; 手写数据库toadb 本专栏主要介绍如何从零开发&#xff0c;开发的步骤&#xff0c;以及开发过程中的涉及的原理&#xff0c;遇到的问题等&#xff0c;让大家能跟上并且可以一起开发&#xff0c;让每个需要的人成为参与者。 本专…