图论-并查集

news2024/11/24 0:34:30

并查集(Union-find Sets)是一种非常精巧而实用的数据结构,它主要用于处理一些不相交集合的合并问题.一些常见的用途有求连通子图,求最小生成树Kruskal算法和最近公共祖先(LCA)等.

并查集的基本操作主要有:

.1.初始化

2.查询find

3.合并union

 

一般我们都会采用路径压缩 这样效率更加高  

 

#include<iostream>
#include<cstdio>
#include<cstdlib>
using namespace std;
#define MAXN 20001
int fa[MAXN];
void init(int n) {
	for (int i = 1; i <= n; i++) {
		fa[i] = i;
	}//初始化
}
int find(int x) {
	if (x == fa[x]) {
		return x;

	}
	else {
		fa[x] = find(fa[x]);//路径压缩 也就是一直找到祖先
		return fa[x];
	}
}
void unionn(int i, int j) {
	int i_fa = find(i);//找到i的祖先
	int j_fa = find(j);//找到j的祖先
	fa[i_fa] = j_fa;//i的祖先指向j的祖先 反过来也可以
}
int main() {
	int n, m, x, y, q;
	scanf("%d", &n);
	init(n);
	scanf("%d", &m);
	for (int i = 1; i <= m; i++) {
		scanf("%d%d", &x, &y);
		unionn(x, y);
	}
	scanf("%d", &q);
	for (int i = 1; i <= q; i++) {
		scanf("%d%d", &x, &y);
		if (find(x) == find(y)) {
			printf("Yes\n");
		}
		else {
			printf("No\n");
		}

	}


	return 0;
}

或者这样写 

#include<iostream>
#include<cstring>
#include<algorithm>

using namespace std;

const int N = 20010;

int n, m;
int p[N];
int find(int x) {
	if (p[x] != x)p[x] = find(p[x]);
	return p[x];
}
int main() {
	scanf("%d%d", &n, &m);
	for (int i = 1; i <= n; i++) p[i] = i;
	while (m--) {
		int a, b;
		scanf("%d%d", &a, &b);
		p[find(a)] = find(b);//合并 a->b
	}
	scanf("%d,&m");
	while (m--) {

		int a, b;
		scanf("%d%d", &a, &b);
		if (find(a) == find(b))puts("yes");
		else puts("no");
	}
	return 0;
	
}

 

#include<iostream>
using namespace std;

const int N = 10010;

int n, m;
int p[N];

int find(int x) {
	if (p[x] != x)p[x] = find(p[x]);
	return p[x];
}
int main() {
	scanf("%d%d", &n, &m);
	for (int i = 1; i <= n; i++) p[i] = i;
	char op[2];//读入操作的字符串  因为字符串后面有'\0'所以要存多一位
	while (m--) {
		int a, b;
		scanf("%s%d%d",&op ,&a, &b);
		if(*op=='M')p[find(a)] = find(b);//合并
		else {
			if (find(a) == find(b)) {
				puts("Yes");
			}
			else {
				puts("No");
			}
		}

	}

	return 0;
}

#include<iostream>
using namespace std;
const int N = 10010;

int n, m;
int p[N], s[N];

int find(int x) {
	if (p[x] != x)p[x] = find(p[x]);
	return p[x];
}
int main() {
	scanf("%d%d", &n, &m);
	for (int i = 1; i <= n; i++) p[i] = i, s[i] = 1;
	while (m--)
	{
		char op[3];
		int a, b;
		scanf("%s", &op);
		if (*op == 'C') {
			scanf("%d%d", &a, &b);
			a = find(a), b = find(b);
			if (a != b) {//如果相等证明他们在同一个祖先中
				s[b] += s[a];
				p[a] = b;
			}
			else if (*op == 'Q1') {
				scanf("%d%d", &a, &b);
				if (find(a) == find(b)) {
					puts("Yes\n");
				}
				else {
					puts("No\n");
				}
			}
			else {
				scanf("%d", &a);
				printf("%d\n", s[find(a)]);
			}
		}
	}
	return 0;
}

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1306189.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

flex布局,换行的元素上下设置间距

要生成的效果图如下&#xff1a; display:flexflex-direction: row;flex-wrap: wrap;当我们使用弹性盒子布局后&#xff0c;默认元素是没有外边距的&#xff0c;紧挨着样式就有点丑&#xff0c;如果想使换行后&#xff0c;元素的外边距有个距离&#xff0c;可以用如下方法解决…

Apache Flink(十二):Flink集群部署-Flink On Yarn

🏡 个人主页:IT贫道_大数据OLAP体系技术栈,Apache Doris,Clickhouse 技术-CSDN博客 🚩 私聊博主:加入大数据技术讨论群聊,获取更多大数据资料。 🔔 博主个人B栈地址:豹哥教你大数据的个人空间-豹哥教你大数据个人主页-哔哩哔哩视频 目录

Python学习笔记(四):函数的定义、函数的返回值、None类型、函数说明文档、函数的嵌套调用、局部变量、全局变量、global关键字

目录 一、函数介绍 1. 函数是&#xff1a; 2. 使用函数的好处是&#xff1a; 二、函数的定义&#xff1a; 三、函数的参数 1.传入参数的功能是&#xff1a; 2.函数的传入参数 - 传参定义 3.注意事项&#xff1a; 4.练习&#xff1a;测量体温 四、函数的返回值 1.函数…

Axure元件基本介绍进阶

Axure元件基本介绍进阶 1.Axure元件基本介绍1.在 Axure 中&#xff0c;元件是构建原型的基本构成单元&#xff0c;能够帮助设计师快速创建、重复使用和管理设计元素。以下是 Axure 中元件的基本介绍&#xff1a;1.基本元件&#xff1a; 2.基本元件的使用一.【举例说明】积木&am…

基于 Game Object Conversion 和 SubScene 的 DOTS 开发工作流(干货满满!)

(译前言: Unity DOTS提出了一套全新的开发技术栈, 但目前少有精讲如何结合现有工作流进行开发的资料, 外网 这篇文章 (Game Object Conversion and SubScene) 详细解构了基于 GameObject 和 Subscene 的工作流程和原理, 要求读者对 DOTS/ECS 有基本的了解, 虽然非常之长, 但值得…

8 Buildroot 根文件系统构建

一、根文件系统简介 根文件系统一般也叫做 rootfs&#xff0c;这个是属于 Linux 内核的一部分。 根文件系统首先是一种文件系统&#xff0c;该文件系统不仅具有普通文件系统的存储数据文件的功能&#xff0c;但是相对于普通的文件系统&#xff0c;它的特殊之处在于&#xff0c;…

flutter的ListView和SingleChildScrollView有什么区别?他们的使用场景有什么不一样?

文章目录 简介ListViewSingleChildScrollView使用场景的不同 简介 ListView和SingleChildScrollView都是在Flutter中用于处理滚动内容的组件&#xff0c;但它们有一些关键的区别。 ListView 多个子元素&#xff1a; ListView是一个滚动的可滚动组件&#xff0c;通常用于包含多…

看图识药,python开发实现基于VisionTransformer的119种中草药图像识别系统

中药药材图像识别相关的实践在前面的系列博文中已经有了相应的实践了&#xff0c;感兴趣的话可以自行移步阅读即可&#xff0c;每篇文章的侧重点不同&#xff1a; 《python基于轻量级GhostNet模型开发构建23种常见中草药图像识别系统》 《基于轻量级MnasNet模型开发构建40种常…

HTML中常用表单元素使用(详解!)

Hi i,m JinXiang ⭐ 前言 ⭐ 本篇文章主要介绍HTML中常用表单元素使用以及部分理论知识 &#x1f349;欢迎点赞 &#x1f44d; 收藏 ⭐留言评论 &#x1f4dd;私信必回哟&#x1f601; &#x1f349;博主收将持续更新学习记录获&#xff0c;友友们有任何问题可以在评论区留言 …

云基础软件深化合作,云轴科技ZStack与麒麟软件战略签约

12月8日&#xff0c;云轴科技ZStack与麒麟软件战略合作签约仪式在北京举行&#xff0c;双方对过往紧密合作表达了充分肯定&#xff0c;并就进一步联合技术创新、打造重点行业标杆和持续赋能客户达成高度共识。云轴科技创始人&CEO张鑫和麒麟软件高级副总经理谢文征共同见证双…

112. 路径总和(Java)

目录 解法&#xff1a; 官方解法&#xff1a; 方法一&#xff1a;广度优先搜索 思路及算法 复杂度分析 时间复杂度&#xff1a; 空间复杂度&#xff1a; 方法二&#xff1a;递归 思路及算法 复杂度分析 时间复杂度&#xff1a; 空间复杂度&#xff1a; 给你二叉树的…

【毕业设计】基于STM32的解魔方机器人

1、方案设计 1.采用舵机作为魔方机器人的驱动电机&#xff0c;从舵机的驱动原理可知&#xff1a;舵机运行的速度和控制器的主频没有关系&#xff0c;所以采用单片机和采用更高主频的嵌入式处理器相比在控制效果上没有什么差别。单片机编程过程简单&#xff0c;非常容易上手&am…

c#_sqlserver_三层架构winform学生信息管理及选课系统

基本功能包括管理员登录、注册学生账号、删除学生信息、查找学生信息、发布课程、修改课程、删除课程等。 教师端 登录&#xff1a;管理员登陆&#xff0c;拥有相应账号即可登录&#xff08;后台注册&#xff09;。注册学生账号&#xff1a;管理员可给学生分配学号&#xff0…

Linux Mint编译安装Qemu

文章目录 前言1. 准备Qemu源码包2. 编译安装2.1 首次尝试编译2.2 安装python3-venv2.3 安装sphinx2.4 安装sphinx-rtd-theme2.4 安装ninja2.6 安装编译器 3. 重新编译并安装4. 进行固件仿真4.1 准备固件4.2 Binwalk解析文件4.3 看一下文件结构4.4 安装sasquatch4.5 重新解析文件…

OkHttp: 拦截器和事件监听器

文章目录 1. 拦截器1. 拦截器链2. 实际案例1. 注册为应用拦截器2. 注册为网络拦截器 3. 如何选择用哪种拦截器1. 应用拦截器2. 网络层拦截器3. 重写请求4. 重写响应 4. 可用性 2. 事件监听器1. 请求的生命周期2. EventListener使用案例3. EventListener.Factory4. 调用失败的请…

一、Oracle学习笔记

1.1.1实例的概念实例是一组内存结构和后台进程的集合。oracle适用于大型的应用系统1.1.2实例的构成1.实例中的这部分内存结构叫做系统全局区&#xff08;SGA&#xff09;:存储数据库中的数据、存储数据字典的信息、重做日志、经过解析的SQL代码等一个实例只有一个SGA&#xff1…

QT作业4

实现一个闹钟&#xff0c;当输入时间后&#xff0c;点击启动到达时间后循环播报三遍&#xff0c;便签内容 头文件&#xff1a; #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QTextToSpeech> //文本转语言类 #include <QTimerEvent> //定…

EasyV易知微助力智慧城市未来趋势发展——数字孪生城市

“智慧城市的未来趋势就是数字孪生”——《基于数字孪生的智慧城市》 城市数字化管理、智慧城市和数字孪生城市的发展是相互促进、逐步深化的过程。 城市数字化管理作为起点&#xff0c;奠定了信息化、数据化的基础&#xff1b;而智慧城市则将数字城市管理进一步升级&#xff…

什么是防抖与节流?应用场景举例

防抖节流如何处理防抖与节流 防抖节流防抖例子节流例子Vue Axios全局接口防抖、节流封装实现 小结 防抖 防抖&#xff1a;触发高频事件后n秒内函数只会执行一次&#xff0c;如果n秒内高频事件再次被触发&#xff0c;则重新计算时间 应用场景&#xff1a; 提交按钮、用户注册…

时间序列预测 — CNN-LSTM实现多变量多步光伏预测(Tensorflow)

目录 1 数据处理 1.1 导入库文件 1.2 导入数据集 1.3 缺失值分析 2 构造训练数据 ​3 模型训练 3.1 CNN-LSTM网络 3.2 模型训练 4 模型预测 专栏链接&#xff1a;https://blog.csdn.net/qq_41921826/category_12495091.html 1 数据处理 1.1 导入库文件 import scip…