时间序列预测 — CNN-LSTM实现多变量多步光伏预测(Tensorflow)

news2024/12/27 1:30:53

目录

1 数据处理

1.1 导入库文件

1.2 导入数据集

1.3 缺失值分析

2 构造训练数据

​3 模型训练

3.1 CNN-LSTM网络 

3.2 模型训练

4 模型预测


 专栏链接:https://blog.csdn.net/qq_41921826/category_12495091.html

1 数据处理

1.1 导入库文件

import scipy
import pandas as pd
import numpy as np
import math
import datetime
from matplotlib import pyplot as plt

# 导入深度学习框架tensorflow
import tensorflow as tf    
from tensorflow import keras 
from tensorflow.keras import Sequential, layers, callbacks
from tensorflow.keras.layers import Input, Reshape,Conv2D, MaxPooling2D, LSTM, Dense, Dropout, Flatten, Reshape

from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error, mean_absolute_percentage_error 

# 忽略警告信息
import warnings
warnings.filterwarnings('ignore')  
plt.rcParams['font.sans-serif'] = ['SimHei']     # 显示中文
plt.rcParams['axes.unicode_minus'] = False  # 显示负号
plt.rcParams.update({'font.size':18})  #统一字体字号

1.2 导入数据集

实验数据集采用数据集6:澳大利亚电力负荷与价格预测数据(下载链接),数据集包括包括数据集包括日期、小时、干球温度、露点温度、湿球温度、湿度、电价、电力负荷特征,时间间隔30min。选取两年的数据进行实验,对数据进行可视化:

# 导入数据
data_raw = pd.read_excel("E:\\课题\\08数据集\\澳大利亚电力负荷与价格预测数据\\澳大利亚电力负荷与价格预测数据.xlsx")
data_raw = data_raw[-365*24*2*2-1:-1]
data_raw
from itertools import cycle
# 可视化数据
def visualize_data(data, row, col):
    cycol = cycle('bgrcmk')
    cols = list(data.columns)
    fig, axes = plt.subplots(row, col, figsize=(16, 4))
    fig.tight_layout()
    if row == 1 and col == 1:  # 处理只有1行1列的情况
        axes = [axes]  # 转换为列表,方便统一处理
    for i, ax in enumerate(axes.flat):
        if i < len(cols):
            ax.plot(data.iloc[:,i], c=next(cycol))
            ax.set_title(cols[i])
        else:
            ax.axis('off')  # 如果数据列数小于子图数量,关闭多余的子图
    plt.subplots_adjust(hspace=0.6)
    plt.show()

visualize_data(data_raw.iloc[:,2:], 2, 3)

​​

​单独查看部分功率数据,发现有较强的规律性。

​​

1.3 缺失值分析

首先查看数据的信息,发现并没有缺失值

data_raw.info()

​​进一步统计缺失值,通过统计数据可以看到,数据比较完整,不存在缺失值。其他异常值和数据处理可以自行处理。

data_raw.isnull().sum()

2 构造训练数据

选取数据集,去掉时间特征

data = data_raw.iloc[:,2:].values

构造训练数据,也是真正预测未来的关键。首先设置预测的timesteps时间步、predict_steps预测的步长(预测的步长应该比总的预测步长小),length总的预测步长,参数可以根据需要更改。

timesteps = 48*7 #构造x,为96*5个数据,表示每次用前96*5个数据作为一段
predict_steps = 48 #构造y,为96个数据,表示用后96个数据作为一段
length = 48 #预测多步,预测96个数据
feature_num = 5 #特征的数量

通过前5天的timesteps个数据预测后一天的predict_steps个数据,需要对数据集进行滚动划分(也就是前timesteps行的特征和后predict_steps行的标签训练,后面预测时就可通过timesteps行特征预测未来的predict_steps个标签)。因为是多变量,特征和标签分开划分。

# 构造数据集,用于真正预测未来数据
# 整体的思路也就是,前面通过前timesteps个数据训练后面的predict_steps个未来数据
# 预测时取出前timesteps个数据预测未来的predict_steps个未来数据。
# 单变量划分只需对单个变量划分,多变量划分特征和标签分开划分
def create_dataset(datasetx, datasety=None, timesteps=36, predict_size=6):
    datax = []  # 构造x
    datay = []  # 构造y
    for each in range(len(datasetx) - timesteps - predict_size):
        x = datasetx[each:each + timesteps]
        # 判断是否是单变量分解还是多变量分解
        if datasety is not None:
            y = datasety[each + timesteps:each + timesteps + predict_size]
        else:
            y = datasetx[each + timesteps:each + timesteps + predict_size, 0]
        datax.append(x)
        datay.append(y)
    return datax, datay

​​数据处理前,需要对数据进行归一化,按照上面的方法划分数据,这里返回划分的数据和归一化模型,因为是多变量,特征和标签分开归一化,不然后面归一化会有信息泄露的问题。函数的定义如下:

# 数据归一化操作
def data_scaler(datax, datay=None, timesteps=36, predict_steps=6):
    # 数据归一化操作
    scaler1 = MinMaxScaler(feature_range=(0, 1))   
    datax = scaler1.fit_transform(datax)
    # 用前面的数据进行训练,留最后的数据进行预测
    # 判断是否是单变量分解还是多变量分解
    if datay is not None:
        scaler2 = MinMaxScaler(feature_range=(0, 1))
        datay = scaler2.fit_transform(datay)
        trainx, trainy = create_dataset(datax, datay, timesteps, predict_steps)
        trainx = np.array(trainx)
        trainy = np.array(trainy)
        return trainx, trainy, scaler1, scaler2
    else:
        trainx, trainy = create_dataset(datax, timesteps=timesteps, predict_size=predict_steps)
        trainx = np.array(trainx)
        trainy = np.array(trainy)
        return trainx, trainy, scaler1, None

然后对数据按照上面的函数进行划分和归一化。通过前5天的96*5数据预测后一天的96个数据,需要对数据集进行滚动划分(也就是前96*5行的特征和后96行的标签训练,后面预测时就可通过96*5行特征预测未来的96个标签)

datax = data[:,:-1]
datay = data[:,-1].reshape(data.shape[0],1)
trainx, trainy, scaler1, scaler2 = data_scaler(datax, datay)

​3 模型训练

3.1 CNN-LSTM网络 

CNN-LSTM 是一种结合了 CNN 特征提取能力与 LSTM 对时间序列长期记忆能力的混合神经网络。

CNN 主要由四个层级组成, 分别为输入层、 卷积层、 激活层(Relu 函数)和池化层。 每一层都会将数据处理之后送到下一层, 其中最重要的是卷积层, 这个层级起到的作用是将特征数据进行卷积计算, 将计算好的结果传到激活层, 激活函数对数据进行筛选。最后一层是 LSTM 层, 这一层是根据 CNN 处理后的特征数据,对其模型进行进一步的维度修偏, 权重修正等工作, 为下一步输出精度较高的预测值做好准备, 在 LSTM 训练的过程中, 由于其神经网络内部包括了输入、 遗忘和输出门, 通常的做法是通过增减遗忘门和输入门的个数, 来控制算法的精度。
 

来源:基于改进的 CNN-LSTM 短期风功率预测方法研究

对于输入到 CNN-LSTM 的数据,首先,经过 CNN 的卷积层对局部特征进行提取,将提取后的特征向量传递到池化层进行特征向量的下采样和数据体量的压缩。然后,将经过卷积层和池化层处理后的特征向量经过一个扁平层转化成一维向量输入到 LSTM 中, 每一层 LSTM 后加一个随机失活层以防止模型过拟合。
 

3.2 模型训练

首先搭建模型的常规操作,然后使用训练数据trainx和trainy进行训练,进行50个epochs的训练,每个batch包含64个样本。此时input_shape划分数据集时每个x的形状。(建议使用GPU进行训练,因为本人电脑性能有限,建议增加epochs值)

# CNN_LSTM模型
def CNN_LSTM_model_train(trainx, trainy, timesteps, feature_num, predict_steps):
    # 调用GPU加速
    gpus = tf.config.experimental.list_physical_devices(device_type='GPU')
    for gpu in gpus:
        tf.config.experimental.set_memory_growth(gpu, True)
    
    # 定义CNN-LSTM模型
    start_time = datetime.datetime.now()
    model = Sequential()
    model.add(Input((timesteps, feature_num)))
    model.add(Reshape((timesteps, feature_num, 1)))
    model.add(Conv2D(filters=64,
                    kernel_size=3,
                    strides=1,
                    padding="same",
                    activation="relu"))
    model.add(MaxPooling2D(pool_size=2, strides=1, padding="same"))
    model.add(Dropout(0.3))
    model.add(Reshape((timesteps, -1)))
    model.add(LSTM(128, return_sequences=True, dropout=0.2))  # 添加dropout层
    model.add(LSTM(64, return_sequences=False, dropout=0.2))  # 添加dropout层
    model.add(Dense(64, activation="relu"))  # 增加Dense层节点数量
    model.add(Dense(predict_steps))
    model.compile(loss="mean_squared_error", optimizer="adam", metrics=['mse'])
    model.summary()
    # 模型训练
    model.fit(trainx, trainy, epochs=50, batch_size=128)
    end_time = datetime.datetime.now()
    running_time = end_time - start_time
    # 保存模型
    model.save('CNN_LSTM_model.h5')

    # 返回构建好的模型
    return model

对划分的数据进行训练 

model = CNN_LSTM_model_train(trainx, trainy, timesteps, feature_num, predict_steps)

4 模型预测

首先加载训练好后的模型

# 加载模型
from tensorflow.keras.models import load_model
model = load_model('BiLSTM_model.h5')

准备好需要预测的数据,训练时保留了6天的数据,将前5天的数据作为输入预测,将预测的结果和最后一天的真实值进行比较。

y_true = datay[-timesteps-predict_steps:-timesteps]
x_pred = datax[-timesteps:]

预测并计算误差,并进行可视化,将这些步骤封装为函数。​​​​​​​

# 预测并计算误差和可视化
def predict_and_plot(x, y_true, model, scaler, timesteps):
    # 变换输入x格式,适应LSTM模型
    predict_x = np.reshape(x, (1, timesteps, feature_num))  
    # 预测
    predict_y = model.predict(predict_x)
    predict_y = scaler.inverse_transform(predict_y)
    y_predict = []
    y_predict.extend(predict_y[0])
    
    # 计算误差
    r2 = r2_score(y_true, y_predict)
    rmse = mean_squared_error(y_true, y_predict, squared=False)
    mae = mean_absolute_error(y_true, y_predict)
    mape = mean_absolute_percentage_error(y_true, y_predict)
    print("r2: %.2f\nrmse: %.2f\nmae: %.2f\nmape: %.2f" % (r2, rmse, mae, mape))
    
    # 预测结果可视化
    cycol = cycle('bgrcmk')
    plt.figure(dpi=100, figsize=(14, 5))
    plt.plot(y_true, c=next(cycol), markevery=5)
    plt.plot(y_predict, c=next(cycol), markevery=5)
    plt.legend(['y_true', 'y_predict'])
    plt.xlabel('时间')
    plt.ylabel('功率(kW)')
    plt.show()
    
    return y_predict
y_predict = predict_and_plot(x_pred, y_true, model, scaler2, timesteps)

最后得到可视化结果和计算的误差,可以通过调参和数据处理进一步提升模型预测效果。

  • r2: 0.19
  • ​​rmse: 725.34
  • mae: 640.73
  • mape: 0.08

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1306156.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

数据库系统相关概念

数据&#xff1a;描述事务的符号记录。 数据库(DB)&#xff1a;按一定的数据模型组织&#xff0c;描述和存储在计算机内的&#xff0c;有组织的&#xff0c;可共享的数据集合。 数据库管理系统(DBMS)&#xff1a;位于用户和操作系统之间的一层数据管理软件。主要功能包括&#…

(C++)最大连续1的个数--滑动窗口

个人主页&#xff1a;Lei宝啊 愿所有美好如期而遇 力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台备战技术面试&#xff1f;力扣提供海量技术面试资源&#xff0c;帮助你高效提升编程技能&#xff0c;轻松拿下世界 IT 名企 Dream Offer。https://le…

【LeetCode题目拓展】第207题 课程表 拓展(拓扑排序、Tarjan算法、Kosaraju算法)

文章目录 一、拓扑排序题目二、题目拓展1. 思路分析2. tarjan算法3. kosaraju算法 一、拓扑排序题目 最近在看一个算法课程的时候看到了一个比较好玩的题目的扩展&#xff0c;它的原题如下&#xff1a; 对应的LeetCode题目为 207. 课程表 这个题目本身来说比较简单&#xff…

C# WPF上位机开发(增强版绘图软件)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 前面我们写过一个绘图软件&#xff0c;不过那个比较简单&#xff0c;主要就是用鼠标模拟pen进行绘图。实际应用中&#xff0c;另外一种使用比较多的…

【flutter对抗】blutter使用+ACTF习题

最新的能很好反编译flutter程序的项目 1、安装 git clone https://github.com/worawit/blutter --depth1​ 然后我直接将对应的两个压缩包下载下来&#xff08;通过浏览器手动下载&#xff09; 不再通过python的代码来下载&#xff0c;之前一直卡在这个地方。 如果读者可以…

C++11 【初识】

C11简介 1.在2003年C标准委员会曾经提交了一份技术勘误表(简称TC1)&#xff0c;使得C03这个名字已经取代了C98称为C11之前的最新C标准名称。 2.不过由于C03(TC1)主要是对C98标准中的漏洞进行修复&#xff0c;语言的核心部分则没有改动&#xff0c;因此人们习惯性的把两个标准合…

【vtkWidgetRepresentation】第十期 vtkAngleRepresentation标注角度

很高兴在雪易的CSDN遇见你 前言 本文分享VTK中的角度标注,希望对各位小伙伴有所帮助! 感谢各位小伙伴的点赞+关注,小易会继续努力分享,一起进步! 你的点赞就是我的动力(^U^)ノ~YO AngleRepresentation 目录 前言 1. vtkAngleRepresentatio

Windows使用selenium操作浏览器爬虫

以前的大部分程序都是操作Chrome&#xff0c;很少有操作Edge&#xff0c;现在以Edge为例。 Selenium本身是无法直接控制浏览器的&#xff0c;不同的浏览器需要不同的驱动程序&#xff0c;Google Chrome需要安装ChromeDriver、Edge需要安装Microsoft Edge WebDriver&#xff0c…

直面双碳目标,优维科技携手奥意建筑打造绿色低碳建筑数智云平台

优维“双碳”战略合作建筑 为落实创新驱动发展战略&#xff0c;增强深圳工程建设领域科技创新能力&#xff0c;促进技术进步、科技成果转化和推广应用&#xff0c;根据《深圳市工程建设领域科技计划项目管理办法》《深圳市住房和建设局关于组织申报2022年深圳市工程建设领域科…

二叉搜索树基本概念与实现

目录 基本概念 模拟实现 完整代码 基本概念 根的左节点比根小 根的右节点比根大 左右子树都满足 搜索二叉树的中序遍历是升序 模拟实现 完整代码 #pragma oncetemplate<class K> struct BSNode {BSNode<K>* _left;BSNode<K>* _right;K _val;BSNode(c…

【C语言程序设计】循环结构程序设计

目录 前言 一、程序设计第一题 二、程序设计第二题 三、程序设计第三题 总结 &#x1f308;嗨&#xff01;我是Filotimo__&#x1f308;。很高兴与大家相识&#xff0c;希望我的博客能对你有所帮助。 &#x1f4a1;本文由Filotimo__✍️原创&#xff0c;首发于CSDN&#x1f4da…

1.函数递归起(复习)

1.debug版本可以调试,realse版本不能调试 2.在realse版本中,代码已经得到了优化(编译器可能会自作主张地对代码进行优化),在大小和速度上都是最优的 3.ctrl F5 是开始执行不调试 4.设置好断点后,用F5到达该断点,相当于是到达了该断点的那个位置程序就先停止运行了 5.设立断…

Linux shell编程学习笔记35:seq

0 前言 在使用 for 循环语句时&#xff0c;我们经常使用到序列。比如&#xff1a; for i in 1 2 3 4 5 6 7 8 9 10; do echo "$i * 2 $(expr $i \* 2)"; done 其中的 1 2 3 4 5 6 7 8 9 10;就是一个整数序列 。 为了方便我们使用数字序列&#xff0c;Linux提供了…

UDS DTC状态掩码/DTC状态位

文章目录 简介用途依赖知识1、测试&#xff08;test&#xff09;2、操作循环&#xff08;operation cycle&#xff09;3、老化&#xff08;aging&#xff09; DTC状态位1、Bit 0&#xff1a;Test Failed2、Bit 1&#xff1a;Test Failed This operation cycle3、Bit 2&#xff…

【大数据】Hadoop生态未来发展的一些看法

大数据的起源 谷歌在2003到2006年间发表了三篇论文&#xff0c;《MapReduce: Simplified Data Processing on Large Clusters》&#xff0c;《Bigtable: A Distributed Storage System for Structured Data》和《The Google File System》介绍了Google如何对大规模数据进行存储…

基于51单片机的语音识别控制系统

0-演示视频 1-功能说明 &#xff08;1&#xff09;使用DHT11检测温湿度&#xff0c;然后用LCD12864显示&#xff0c;语音播放&#xff0c;使用STC11l08xe控制LD3320做语音识别&#xff0c; &#xff08;2&#xff09;上电时语音提示&#xff1a;欢迎使用声音识别系统&#xf…

数据结构篇-顺序表及单项链表

目录 一、学习目标 二、顺序表 1. 线性表 1.1 概念 1.2 举例 2. 顺序表 2.1 基本概念 2.2 基本操作 2.3 顺序表优缺点总结 三、单项链表 1. 基本概念 2. 链表的分类 无头节点&#xff1a; 有头节点&#xff1a; 增添加节点 查找节点 删除节点 链表遍历 销毁链…

【ARM Trace32(劳特巴赫) 使用介绍 13 -- Trace32 断点 Break 命令篇】

文章目录 1. Break.Set1.1 TRACE32 Break1.1.1 Break命令控制CPU的暂停1.2 Break.Set 设置断点1.2.1 Trace32 程序断点1.2.2 读写断点1.2.2.1 变量被改写为特定值触发halt1.2.2.2 设定非值触发halt1.2.2.4 变量被特定函数改写触发halt1.2.3 使用C/C++语法设置断点条件1.2.4 使用…

折点计数 C语言xdoj46

问题描述 给定n个整数表示一个商店连续n天的销售量。如果某天之前销售量在增长&#xff0c;而后一天销售量减少&#xff0c;则称这一天为折点&#xff0c;反过来如果之前销售量减少而后一天销售量增长&#xff0c;也称这一天为折点&#xff0c;其他的天都不是折点。如图…

AI大模型行业2024年上半年投资策略:大模型多模态化趋势显著,AI应用侧加速繁华

今天分享的AI系列深度研究报告&#xff1a;《AI大模型行业2024年上半年投资策略&#xff1a;大模型多模态化趋势显著&#xff0c;AI应用侧加速繁华》。 &#xff08;报告出品方&#xff1a;东莞证券&#xff09; 报告共计&#xff1a;30页 1.传媒行业行情和业绩回顾 1.1行业…