磁力计LIS2MDL开发(1)----轮询获取磁力计数据

news2024/12/23 17:28:04

磁力计LIS2MDL开发.1--轮询获取磁力计数据

  • 概述
  • 视频教学
  • 样品申请
  • 源码下载
  • 通信模式
  • 速率
  • 生成STM32CUBEMX
  • 串口配置
  • IIC配置
  • CS设置
  • 串口重定向
  • 参考程序
  • 初始换管脚
  • 获取ID
  • 复位操作
  • BDU设置
  • 设置速率
  • 启用偏移消除
  • 开启温度补偿
  • 设置为连续模式
  • 轮询读取数据
  • 主程序
  • 演示

概述

本文将介绍如何使用 LIS2MDL 传感器来读取数据。主要步骤包括初始化传感器接口、验证设备ID、配置传感器的数据输出率和滤波器,以及通过轮询方式持续读取磁力数据和温度数据。读取到的数据会被转换为适当的单位并通过串行通信输出。
这个传感器常用于多种电子设备中,以提供精确的磁场强度数据,从而用于指南针应用、位置追踪或者动作检测等功能。

最近在弄ST和瑞萨RA的课程,需要样片的可以加群申请:615061293 。

在这里插入图片描述

视频教学

样品申请

https://www.wjx.top/vm/OhcKxJk.aspx#

源码下载

通信模式

对于LIS2MDL,可以使用SPI或者IIC进行通讯。
最小系统图如下所示。
在这里插入图片描述

在CS管脚为1的时候,为IIC模式
在这里插入图片描述

本文使用的板子原理图如下所示。

在这里插入图片描述

速率

该模块支持的速度为普通模式(100k)、快速模式(400k)、快速模式+(1M)、高速模式(3.4M)。
在这里插入图片描述

生成STM32CUBEMX

用STM32CUBEMX生成例程,这里使用MCU为STM32WB55RG。
配置时钟树,配置时钟为32M。

在这里插入图片描述

串口配置

查看原理图,PB6和PB7设置为开发板的串口。

在这里插入图片描述
配置串口。

在这里插入图片描述

IIC配置

在这里插入图片描述

配置IIC为快速模式,速度为400k。
在这里插入图片描述

CS设置

在这里插入图片描述

在这里插入图片描述

串口重定向

打开魔术棒,勾选MicroLIB

在这里插入图片描述

在main.c中,添加头文件,若不添加会出现 identifier “FILE” is undefined报错。

/* USER CODE BEGIN Includes */
#include "stdio.h"
/* USER CODE END Includes */

函数声明和串口重定向:

/* USER CODE BEGIN PFP */
int fputc(int ch, FILE *f){
	HAL_UART_Transmit(&huart1 , (uint8_t *)&ch, 1, 0xFFFF);
	return ch;
}
/* USER CODE END PFP */

参考程序

https://github.com/STMicroelectronics/lis2mdl-pid

初始换管脚

使能CS为高电平,配置为IIC模式。

	printf("123123123\n");
  /* Initialize mems driver interface */
  stmdev_ctx_t dev_ctx;
  dev_ctx.write_reg = platform_write;
  dev_ctx.read_reg = platform_read;
  dev_ctx.handle = &SENSOR_BUS;

  HAL_GPIO_WritePin(LIS2MDL_CS_GPIO_Port, LIS2MDL_CS_Pin, GPIO_PIN_SET);

  /* Wait sensor boot time */
  platform_delay(BOOT_TIME);

获取ID

可以向WHO_AM_I (4Fh)获取固定值,判断是否为0x40

在这里插入图片描述
is2mdl_device_id_get为获取函数。

在这里插入图片描述

对应的获取ID驱动程序,如下所示。

  /* Wait sensor boot time */
  platform_delay(BOOT_TIME);
  /* Check device ID */
  lis2mdl_device_id_get(&dev_ctx, &whoamI);
	printf("LIS2MDL_ID=0x%x,whoamI=0x%x\n",LIS2MDL_ID,whoamI);
  if (whoamI != LIS2MDL_ID)
    while (1) {
      /* manage here device not found */
    }

复位操作

可以向CFG_REG_A (60h)的SOFT_RST寄存器写入1进行复位。

在这里插入图片描述

lis2mdl_reset_set为重置函数。

在这里插入图片描述

对应的驱动程序,如下所示。

 /* Restore default configuration */
  lis2mdl_reset_set(&dev_ctx, PROPERTY_ENABLE);

  do {
    lis2mdl_reset_get(&dev_ctx, &rst);
  } while (rst);

BDU设置

在很多传感器中,数据通常被存储在输出寄存器中,这些寄存器分为两部分:MSB和LSB。这两部分共同表示一个完整的数据值。例如,在一个加速度计中,MSB和LSB可能共同表示一个加速度的测量值。
连续更新模式(BDU = ‘0’):在默认模式下,输出寄存器的值会持续不断地被更新。这意味着在你读取MSB和LSB的时候,寄存器中的数据可能会因为新的测量数据而更新。这可能导致一个问题:当你读取MSB时,如果寄存器更新了,接下来读取的LSB可能就是新的测量值的一部分,而不是与MSB相对应的值。这样,你得到的就是一个“拼凑”的数据,它可能无法准确代表任何实际的测量时刻。
块数据更新(BDU)模式(BDU = ‘1’):当激活BDU功能时,输出寄存器中的内容不会在读取MSB和LSB之间更新。这就意味着一旦开始读取数据(无论是先读MSB还是LSB),寄存器中的那一组数据就被“锁定”,直到两部分都被读取完毕。这样可以确保你读取的MSB和LSB是同一测量时刻的数据,避免了读取到代表不同采样时刻的数据。
简而言之,BDU位的作用是确保在读取数据时,输出寄存器的内容保持稳定,从而避免读取到拼凑或错误的数据。这对于需要高精度和稳定性的应用尤为重要。
可以向CTRL3 (12h)的BDU寄存器写入1进行开启。

在这里插入图片描述

对应的驱动程序,如下所示。

  /* Enable Block Data Update */
  lis2mdl_block_data_update_set(&dev_ctx, PROPERTY_ENABLE);

设置速率

速率可以通过CFG_REG_A (60h)的ODR设置速率。

在这里插入图片描述

设置速率可以使用如下函数。

  /* Set Output Data Rate */
  lis2mdl_data_rate_set(&dev_ctx, LIS2MDL_ODR_10Hz);

启用偏移消除

LIS2MDL 磁力计的配置寄存器(CFG_REG_B)的OFF_CANC - 这个位用于启用或禁用偏移消除。
这意味着每次磁力计准备输出新的测量数据时,它都会自动进行偏移校准,以确保数据的准确性。这通常用于校准传感器,以消除由于传感器偏移或环境因素引起的任何误差。
在这里插入图片描述

  /* Set / Reset sensor mode */
  lis2mdl_set_rst_mode_set(&dev_ctx, LIS2MDL_SENS_OFF_CANC_EVERY_ODR);

开启温度补偿

开启温度补偿可以通过CFG_REG_A (60h)的COMP_TEMP_EN进行配置。
在这里插入图片描述

  /* Enable temperature compensation */
  lis2mdl_offset_temp_comp_set(&dev_ctx, PROPERTY_ENABLE);

设置为连续模式

LIS2MDL 磁力计 CFG_REG_A (60h) 配置寄存器的MD1 和 MD0 - 这两个位用于选择设备的工作模式。
00 - 连续模式,设备连续进行测量并将结果放在数据寄存器中。
01 - 单次模式,设备进行单次测量,然后返回到空闲模式。
10 和 11 - 空闲模式,设备被置于空闲模式,但I2C和SPI接口仍然激活
在这里插入图片描述

  /* Set device in continuous mode */
  lis2mdl_operating_mode_set(&dev_ctx, LIS2MDL_CONTINUOUS_MODE);

轮询读取数据

对于数据是否准备好,可以查看STATUS_REG (67h)的Zyxda位,判断是否有新数据到达。
在这里插入图片描述

    uint8_t reg;
    /* Read output only if new value is available */
    lis2mdl_mag_data_ready_get(&dev_ctx, &reg);

数据OUTX_L_REG(68h)-OUTZ_H_REG(6Dh)获取。

在这里插入图片描述

      /* Read magnetic field data */
      memset(data_raw_magnetic, 0x00, 3 * sizeof(int16_t));
      lis2mdl_magnetic_raw_get(&dev_ctx, data_raw_magnetic);
      magnetic_mG[0] = lis2mdl_from_lsb_to_mgauss(data_raw_magnetic[0]);
      magnetic_mG[1] = lis2mdl_from_lsb_to_mgauss(data_raw_magnetic[1]);
      magnetic_mG[2] = lis2mdl_from_lsb_to_mgauss(data_raw_magnetic[2]);

主程序

 /* USER CODE BEGIN 2 */
	printf("123123123\n");
  /* Initialize mems driver interface */
  stmdev_ctx_t dev_ctx;
  dev_ctx.write_reg = platform_write;
  dev_ctx.read_reg = platform_read;
  dev_ctx.handle = &SENSOR_BUS;

  HAL_GPIO_WritePin(LIS2MDL_CS_GPIO_Port, LIS2MDL_CS_Pin, GPIO_PIN_SET);

  /* Wait sensor boot time */
  platform_delay(BOOT_TIME);



  /* Check device ID */
  lis2mdl_device_id_get(&dev_ctx, &whoamI);
	printf("LIS2MDL_ID=0x%x,whoamI=0x%x\n",LIS2MDL_ID,whoamI);
  if (whoamI != LIS2MDL_ID)
    while (1) {
      /* manage here device not found */
    }

  /* Restore default configuration */
  lis2mdl_reset_set(&dev_ctx, PROPERTY_ENABLE);

  do {
    lis2mdl_reset_get(&dev_ctx, &rst);
  } while (rst);

  /* Enable Block Data Update */
  lis2mdl_block_data_update_set(&dev_ctx, PROPERTY_ENABLE);
  /* Set Output Data Rate */
  lis2mdl_data_rate_set(&dev_ctx, LIS2MDL_ODR_10Hz);
  /* Set / Reset sensor mode */
  lis2mdl_set_rst_mode_set(&dev_ctx, LIS2MDL_SENS_OFF_CANC_EVERY_ODR);
  /* Enable temperature compensation */
  lis2mdl_offset_temp_comp_set(&dev_ctx, PROPERTY_ENABLE);
  /* Set device in continuous mode */
  lis2mdl_operating_mode_set(&dev_ctx, LIS2MDL_CONTINUOUS_MODE);
  /* USER CODE END 2 */
  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
		
    uint8_t reg;
    /* Read output only if new value is available */
    lis2mdl_mag_data_ready_get(&dev_ctx, &reg);

    if (reg) {
      /* Read magnetic field data */
      memset(data_raw_magnetic, 0x00, 3 * sizeof(int16_t));
      lis2mdl_magnetic_raw_get(&dev_ctx, data_raw_magnetic);
      magnetic_mG[0] = lis2mdl_from_lsb_to_mgauss(data_raw_magnetic[0]);
      magnetic_mG[1] = lis2mdl_from_lsb_to_mgauss(data_raw_magnetic[1]);
      magnetic_mG[2] = lis2mdl_from_lsb_to_mgauss(data_raw_magnetic[2]);
      printf("Magnetic field [mG]:%4.2f\t%4.2f\t%4.2f\r\n",magnetic_mG[0], magnetic_mG[1], magnetic_mG[2]);

      /* Read temperature data */
      memset(&data_raw_temperature, 0x00, sizeof(int16_t));
      lis2mdl_temperature_raw_get(&dev_ctx, &data_raw_temperature);
      temperature_degC = lis2mdl_from_lsb_to_celsius(data_raw_temperature);
      printf("Temperature [degC]:%6.2f\r\n",temperature_degC); 
    
    }		
		HAL_Delay(10);
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}      

演示

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1305664.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

明道云在戴斯克,从业务整合到高效管理的秘诀

内容来自演讲:付震东 | 北京戴斯克商务有限公司 |数字化负责人 摘要 本文介绍了明道云在戴斯克公司的应用以及数字化转型过程中所起的作用。戴斯克公司使用明道云后,实现了系统落地速度、工作效率、决策方法和工作意识的提升。通过不断抽象…

集成开发之如何用好明道云

内容来自演讲:张嵩 | 苏州睿能科技有限公司 | 公司负责人 摘要 这篇文章介绍了作者所在公司如何利用明道云进行集成开发,并分享了四个实际案例。在第一个数字化实验室项目中,该公司使用明道云取代现有的STARLIMS商业软件,并实现…

微表情检测(四)----SL-Swin

SL-Swin: A Transformer-Based Deep Learning Approach for Macro- and Micro-Expression Spotting on Small-Size Expression Datasets 在本文中,我们致力于解决从视频中检测面部宏观和微观表情的问题,并通过使用深度学习方法分析光流特征提出了引人注…

XGBoost和LightGBM时间序列预测对比(备忘)

XGBoost和LightGBM都是目前非常流行的基于决策树的机器学习模型,它们都有着高效的性能表现,但是在某些情况下,它们也有着不同的特点。 XGBoost和LightGBM简单对比 训练速度 LightGBM相较于xgboost在训练速度方面有明显的优势。这是因为Ligh…

【Spring教程26】Spring框架实战:从零开始学习SpringMVC 之 bean加载控制

目录 1 问题分析2 思路分析3 环境准备4 设置bean加载控制5 知识点1:ComponentScan 欢迎大家回到《Java教程之Spring30天快速入门》,本教程所有示例均基于Maven实现,如果您对Maven还很陌生,请移步本人的博文《如何在windows11下安装…

智能优化算法应用:基于哈里斯鹰算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于哈里斯鹰算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于哈里斯鹰算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.哈里斯鹰算法4.实验参数设定5.算法结果6.…

【尘缘送书第七期】2023年度盘点:智能汽车 | 自动驾驶 | 车联网

【文末送书】今天推荐几本智能汽车 | 自动驾驶 | 车联网领域优质书籍。 目录 引言1 《智能汽车》2 《SoC底层软件低功耗系统设计与实现》3 《SoC设计指南》4 《蜂窝车联网与网联自动驾驶》5 《智能汽车网络安全权威指南(上册)》6 《智能汽车网络安全权威…

Keil 编译输出信息分析:Program size: Code, RO-data , RW-data, ZI-data

一般 MCU 包含的存储空间有:片内 Flash 与片内 RAM,RAM 相当于内存,Flash 相当于硬盘。编译器会将一个程序分类为好几个部分,分别存储在 MCU 不同的存储区。 如图所示,在Keil中编译工程成功后,在下面的Bul…

智能优化算法应用:基于闪电搜索算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于闪电搜索算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于闪电搜索算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.闪电搜索算法4.实验参数设定5.算法结果6.…

NCNN 源码学习【二】:模型加载

​ 正文 这次先来看一段NCNN应用代码中,最先出现的部分,模型加载 ncnn::Net squeezenet; squeezenet.load_param("squeezenet_v1.1.param"); squeezenet.load_model("squeezenet_v1.1.bin");首先我们可以看到一个 ncnn的类Net&am…

【@Cacheable的使用,及设置过期时间 配置方式】

Cacheable的使用,及设置过期时间 配置方式 使用方式 使用方式 Cacheable(cacheNames “ssss#30” ,key “#aaa‘‘#beginTime’’#endTime”) cacheNames/value :用来指定缓存组件的名字key :缓存数据时使用的 key,可以用它来指…

【Oracle】backup备份时报错ORA-19809,ORA-9804

Oracle备份数据库时报错 ORA-19809: limit exceeded for recovery files ORA-19804: cannot reclaim 10305536 bytes disk space from 4385144832 limit 1.清理过时的备份: 使用RMAN删除不再需要的过时备份,以释放空间。执行以下命令: DEL…

模块一——双指针:11.盛最多水的容器

文章目录 题目解析算法原理解法一:暴力枚举(超时)解法二:双指针单调性 代码实现暴力枚举(超时)双指针单调性(时间复杂度为O(N),空间复杂度为O(1)) 题目解析 题目链接:11.盛最多水的容器 这道题…

uniapp实战 —— 轮播图【数字下标】(含组件封装,点击图片放大全屏预览)

组件封装 src\components\SUI_Swiper2.vue <script setup lang"ts"> import { ref } from vue const props defineProps({config: Object, })const activeIndex ref(0) const change: UniHelper.SwiperOnChange (e) > {activeIndex.value e.detail.cur…

C# Socket通信从入门到精通(14)——多个异步UDP客户端C#代码实现

前言: 在之前的文章C# Socket通信从入门到精通(13)——单个异步UDP客户端C#代码实现我介绍了单个异步Udp客户端的c#代码实现,但是有的时候,我们需要连接多个服务器,并且对于每个服务器,我们都有一些比如异步发送、异步接收的操作,那么这时候我们使用之前单个异步Udp客…

jmeter接口测试之登录测试

注册登录_登陆接口文档 1.登录 请求地址&#xff1a; POST xxxxxx/Home/Login 请求参数&#xff1a; args{LoginName:"mtest", // 登录名&#xff0c;可以为用户名或邮箱Password:"123456" // 密码" }响应数据&#xff1a; 成功 {"S…

浅谈linux缓冲区的认识!

今天来为大家分享一波关于缓冲区的知识&#xff01;那么既然我们要谈缓冲区&#xff0c;那么就得从是什么&#xff1f;为什么&#xff1f;有什么作用这几个方面来谈论一下缓冲区&#xff01;然后再通过一些代码来更加深刻的理解缓冲区的知识&#xff01; 引言&#xff1a; 是…

ServletJSP

Servlet 1.Servlet生命周期 2.HttpServletRequest与HttpServletResponse 2.1HttpServletRequest 获取请求参数 请求乱码问题&#xff1a; 请求转发 request作用域 2.2HttpServletResponse 输出 乱码 重定向 3.Cookie 4.Sessions 5.ServletContext 获取方式及常用方法&a…

selenium自动化(中)

显式等待与隐式等待 简介 在实际工作中等待机制可以保证代码的稳定性&#xff0c;保证代码不会受网速、电脑性能等条件的约束。 等待就是当运行代码时&#xff0c;如果页面的渲染速度跟不上代码的运行速度&#xff0c;就需要人为的去限制代码执行的速度。 在做 Web 自动化时…

经典策略筛选-20231212

策略1&#xff1a; 龙头战法只做最强&#xff1a;国企改革 ----四川金顶 1、十日交易内出现 涨停或 &#xff08;涨幅大于7个点且量比大于3&#xff09; 2、JDK MACD RSI OBV BBI LWR MTM 六指标共振 3、均线多头 4、 筹码峰 &#xff08;锁仓&#xff09; 5、现价>…