模块一——双指针:11.盛最多水的容器

news2025/1/23 8:16:31

文章目录

  • 题目解析
  • 算法原理
    • 解法一:暴力枚举(超时)
    • 解法二:双指针+单调性
  • 代码实现
    • 暴力枚举(超时)
    • 双指针+单调性(时间复杂度为O(N),空间复杂度为O(1))

题目解析

题目链接:11.盛最多水的容器
在这里插入图片描述
这道题简单理解为要我们求长方形的面积就行了。

算法原理

解法一:暴力枚举(超时)

枚举出能构成的所有容器,找出其中容积最⼤的值。
容器容积的计算⽅式:
设两指针left,right分别指向⽔槽板的最左端以及最右端,此时容器的宽度为right-left。由于容器的⾼度由两板中的短板决定,因此可得容积公式: v = (right-left) * min( height[left], height[right]).

解法二:双指针+单调性

  • 设两个指针left ,right 分别指向容器的左右两个端点,此时容器的容积: v = (right - left) * min(height[right], height[left])
  • 容器的左边界为height[left] ,右边界为height[right] 。
  • 为了⽅便叙述,我们假设「左边边界」⼩于「右边边界」。

如果此时我们固定⼀个边界,改变另⼀个边界,⽔的容积会有如下变化形式:

  • 容器的宽度⼀定变⼩。
  • 由于左边界较⼩,决定了⽔的⾼度。如果改变左边界,新的⽔⾯⾼度不确定,但是⼀定不会超过右边的柱⼦⾼度,因此容器的容积可能会增⼤。
  • 如果改变右边界,⽆论右边界移动到哪⾥,新的⽔⾯的⾼度⼀定不会超过左边界,也就是不会超过现在的⽔⾯⾼度,但是由于容器的宽度减⼩,因此容器的容积⼀定会变⼩的。

由此可⻅,左边界和其余边界的组合情况都可以舍去。所以我们可以left++ 跳过这个边界,继续去判断下⼀个左右边界。
当我们不断重复上述过程,每次都可以舍去⼤量不必要的枚举过程,直到left 与right 相遇。期间产⽣的所有的容积⾥⾯的最⼤值,就是最终答案。

代码实现

暴力枚举(超时)

class Solution {
public:
    int maxArea(vector<int>& height) {
        int maxVolume = 0,n = height.size();
        for(int left = 0;left < n;left++)
        {
            for(int right = left;right < n;right++)
            {
                maxVolume = max(maxVolume,(right - left) * min(height[left],height[right]));
            }
        }
        return maxVolume;
    }
};

双指针+单调性(时间复杂度为O(N),空间复杂度为O(1))

class Solution {
public:
    int maxArea(vector<int>& height) {
        int left = 0,right = height.size() - 1;//双指针
        int maxVolume = 0;//记录结果
        while(left < right){
            maxVolume = max(maxVolume,(right - left) * min(height[left],height[right]));
            if(height[left] > height[right])right--;
            else left++;
        }
        return maxVolume;
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1305643.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

uniapp实战 —— 轮播图【数字下标】(含组件封装,点击图片放大全屏预览)

组件封装 src\components\SUI_Swiper2.vue <script setup lang"ts"> import { ref } from vue const props defineProps({config: Object, })const activeIndex ref(0) const change: UniHelper.SwiperOnChange (e) > {activeIndex.value e.detail.cur…

C# Socket通信从入门到精通(14)——多个异步UDP客户端C#代码实现

前言: 在之前的文章C# Socket通信从入门到精通(13)——单个异步UDP客户端C#代码实现我介绍了单个异步Udp客户端的c#代码实现,但是有的时候,我们需要连接多个服务器,并且对于每个服务器,我们都有一些比如异步发送、异步接收的操作,那么这时候我们使用之前单个异步Udp客…

jmeter接口测试之登录测试

注册登录_登陆接口文档 1.登录 请求地址&#xff1a; POST xxxxxx/Home/Login 请求参数&#xff1a; args{LoginName:"mtest", // 登录名&#xff0c;可以为用户名或邮箱Password:"123456" // 密码" }响应数据&#xff1a; 成功 {"S…

浅谈linux缓冲区的认识!

今天来为大家分享一波关于缓冲区的知识&#xff01;那么既然我们要谈缓冲区&#xff0c;那么就得从是什么&#xff1f;为什么&#xff1f;有什么作用这几个方面来谈论一下缓冲区&#xff01;然后再通过一些代码来更加深刻的理解缓冲区的知识&#xff01; 引言&#xff1a; 是…

ServletJSP

Servlet 1.Servlet生命周期 2.HttpServletRequest与HttpServletResponse 2.1HttpServletRequest 获取请求参数 请求乱码问题&#xff1a; 请求转发 request作用域 2.2HttpServletResponse 输出 乱码 重定向 3.Cookie 4.Sessions 5.ServletContext 获取方式及常用方法&a…

selenium自动化(中)

显式等待与隐式等待 简介 在实际工作中等待机制可以保证代码的稳定性&#xff0c;保证代码不会受网速、电脑性能等条件的约束。 等待就是当运行代码时&#xff0c;如果页面的渲染速度跟不上代码的运行速度&#xff0c;就需要人为的去限制代码执行的速度。 在做 Web 自动化时…

经典策略筛选-20231212

策略1&#xff1a; 龙头战法只做最强&#xff1a;国企改革 ----四川金顶 1、十日交易内出现 涨停或 &#xff08;涨幅大于7个点且量比大于3&#xff09; 2、JDK MACD RSI OBV BBI LWR MTM 六指标共振 3、均线多头 4、 筹码峰 &#xff08;锁仓&#xff09; 5、现价>…

虹科分享 | CanEasy多场景应用,让汽车总线测试更简单

CanEasy是一个基于Windows的总线工具&#xff0c;用于分析和测试CAN、CAN FD和LIN以及汽车以太网系统。通过高度自动化和简单的配置模拟总线流量&#xff0c;CanEasy可用于分析真实网络、模拟虚拟系统&#xff0c;以及在整个开发过程中进行剩余总线模拟&#xff0c;实现从测试到…

FFmpeg-基础组件-AVFrame

本章主要介绍FFmpeg基础组件AVFrame. 文章目录 1.结构体成员2.成员函数AVFrame Host内存的获取 av_frame_get_bufferAVFrame device内存获取av_hwframe_get_buffer&#xff08;&#xff09; 1.结构体成员 我们把所有的代码先粘贴上来&#xff0c;在后边一个一个解释。 typede…

鸿蒙Stage模型开发—创建你的第一个ArkTS应用

Stage模型开发概述 基本概念 下图展示了Stage模型中的基本概念。 图1 Stage模型概念图 UIAbility组件和ExtensionAbility组件 Stage模型提供UIAbility和ExtensionAbility两种类型的组件&#xff0c;这两种组件都有具体的类承载&#xff0c;支持面向对象的开发方式。UIAbility…

ARM:作业3

按键中断代码编写 代码: key_it.h #ifndef __KEY_IT_H__ #define __KEY_IT_H__#include "stm32mp1xx_gpio.h" #include "stm32mp1xx_exti.h" #include "stm32mp1xx_rcc.h" #include "stm32mp1xx_gic.h"void key1_it_config(); voi…

冯诺依曼体系与操作系统的理解

目录 一.冯诺依曼体系结构 存储分级 为什么程序运行之前&#xff0c;必须加载到内存上&#xff1f; 二.操作系统 操作系统是什么&#xff1f; 为什么需要操作系统&#xff1f; 操作系统是如何管理软硬件资源&#xff1f; 一.冯诺依曼体系结构 我们常见的计算机&#xff…

Qt 容器QGroupBox带有标题的组框框架

控件简介 QGroupBox 小部件提供一个带有标题的组框框架。一般与一组或者是同类型的部件一起使用。教你会用,怎么用的强大就靠你了靓仔、靓妹。 用法示例 例 qgroupbox,组框示例(难度:简单),使用 3 个 QRadioButton 单选框按钮,与QVBoxLayout(垂直布局)来展示组框的…

BearPi Std 板从入门到放弃 - 先天神魂篇(2)(RT-Thread LED PWM驱动)

简介 基于 BearPi Std 板从入门到放弃 - 先天神魂篇&#xff08;1&#xff09;(RT-Thread 指令点亮LED) 创建的项目, 添加PWM驱动LED的方式实现呼吸灯功能, 电路板及相关使用到的配件说明 开发板 &#xff1a; Bearpi Std(小熊派标准板) 主芯片: STM32L431RCT6 E53_ST1扩展板/…

【acwing】92. 递归实现指数型枚举

穿越隧道 递归枚举、位运算 方法① 从1到n&#xff0c;顺序访问每位数&#xff0c;是否选择&#xff0c;每位数有两种状态&#xff0c;选1或不选0. AC代码如下&#xff1a; #include <iostream> using namespace std;const int N 100; // bool st[N]; int n;void dfs(in…

智能优化算法应用:基于指数分布算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于指数分布算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于指数分布算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.指数分布算法4.实验参数设定5.算法结果6.参考…

优雅玩转实验室服务器(一)登录服务器

这篇文章更加偏向于使用python程序进行研究的朋友们 原料 Windows主机实验室Linux服务器&#xff08;可以访问互联网&#xff09;一点点耐心 step.0 windows terminal is all you need 别跟我说什么putty&#xff0c;什么winscp&#xff0c;我就是单推Win11自带的软件——win…

DNS漫游指南:从网址到IP的奇妙之旅

当用户在浏览器中输入特定网站时发生的整个端到端过程可以参考下图 1*4vb-NMUuYTzYBYUFSuSKLw.png 问题&#xff1a; 什么是 DNS&#xff1f; 答案 → DNS 指的是域名系统&#xff08;Domain Name System&#xff09;。DNS 是互联网的目录&#xff0c;将人类可读的域名&#…

佛山陶企再造行业新风口,开启中国陶瓷下半场

近年来&#xff0c;消费形态逐渐呈现年轻化、时尚化、数字化的趋势&#xff0c;新一地居住者对于居住环境的品质和舒适度要求日益提高。伴随着新消费势力的崛起&#xff0c;家居建材行业消费转型升级已成必然。“千年陶都”佛山作为我国陶瓷行业的风向标&#xff0c;率先推进技…

漏洞复现-云安宝-云匣子Fastjson命令执行(附漏洞检测脚本)

免责声明 文章中涉及的漏洞均已修复&#xff0c;敏感信息均已做打码处理&#xff0c;文章仅做经验分享用途&#xff0c;切勿当真&#xff0c;未授权的攻击属于非法行为&#xff01;文章中敏感信息均已做多层打马处理。传播、利用本文章所提供的信息而造成的任何直接或者间接的…