Pytorch-LSTM轴承故障一维信号分类(一)

news2024/12/23 7:04:05

目录

前言

1 数据集制作与加载

1.1 导入数据

第一步,导入十分类数据

第二步,读取MAT文件驱动端数据

第三步,制作数据集

第四步,制作训练集和标签

1.2 数据加载,训练数据、测试数据分组,数据分batch

2 LSTM分类模型和超参数选取

2.1 定义LSTM分类模型

2.2 定义模型参数

2.3 模型结构

3 LSTM模型训练与评估

3.1 模型训练

3.2 模型评估


往期精彩内容:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理

Python轴承故障诊断 (一)短时傅里叶变换STFT

Python轴承故障诊断 (二)连续小波变换CWT

Python轴承故障诊断 (三)经验模态分解EMD

Python轴承故障诊断 (四)基于EMD-CNN的故障分类

Python轴承故障诊断 (五)基于EMD-LSTM的故障分类

前言

本文基于凯斯西储大学(CWRU)轴承数据,先经过数据预处理进行数据集的制作和加载,最后通过Python实现LSTM模型对故障数据的分类。凯斯西储大学轴承数据的详细介绍可以参考下文:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理

1 数据集制作与加载

1.1 导入数据

参考之前的文章,进行故障10分类的预处理,凯斯西储大学轴承数据10分类数据集:

第一步,导入十分类数据

import numpy as np
import pandas as pd
from scipy.io import loadmat

file_names = ['0_0.mat','7_1.mat','7_2.mat','7_3.mat','14_1.mat','14_2.mat','14_3.mat','21_1.mat','21_2.mat','21_3.mat']

for file in file_names:
    # 读取MAT文件
    data = loadmat(f'matfiles\\{file}')
    print(list(data.keys()))

第二步,读取MAT文件驱动端数据

# 采用驱动端数据
data_columns = ['X097_DE_time', 'X105_DE_time', 'X118_DE_time', 'X130_DE_time', 'X169_DE_time',
                'X185_DE_time','X197_DE_time','X209_DE_time','X222_DE_time','X234_DE_time']
columns_name = ['de_normal','de_7_inner','de_7_ball','de_7_outer','de_14_inner','de_14_ball','de_14_outer','de_21_inner','de_21_ball','de_21_outer']
data_12k_10c = pd.DataFrame()
for index in range(10):
    # 读取MAT文件
    data = loadmat(f'matfiles\\{file_names[index]}')
    dataList = data[data_columns[index]].reshape(-1)
    data_12k_10c[columns_name[index]] = dataList[:119808]  # 121048  min: 121265
print(data_12k_10c.shape)
data_12k_10c

第三步,制作数据集

train_set、val_set、test_set 均为按照7:2:1划分训练集、验证集、测试集,最后保存数据

第四步,制作训练集和标签

# 制作数据集和标签
import torch

# 这些转换是为了将数据和标签从Pandas数据结构转换为PyTorch可以处理的张量,
# 以便在神经网络中进行训练和预测。

def make_data_labels(dataframe):
    '''
        参数 dataframe: 数据框
        返回 x_data: 数据集     torch.tensor
            y_label: 对应标签值  torch.tensor
    '''
    # 信号值
    x_data = dataframe.iloc[:,0:-1]
    # 标签值
    y_label = dataframe.iloc[:,-1]
    x_data = torch.tensor(x_data.values).float()
    y_label = torch.tensor(y_label.values.astype('int64')) # 指定了这些张量的数据类型为64位整数,通常用于分类任务的类别标签
    return x_data, y_label

# 加载数据
train_set = load('train_set')
val_set = load('val_set')
test_set = load('test_set')

# 制作标签
train_xdata, train_ylabel = make_data_labels(train_set)
val_xdata, val_ylabel = make_data_labels(val_set)
test_xdata, test_ylabel = make_data_labels(test_set)
# 保存数据
dump(train_xdata, 'trainX_1024_10c')
dump(val_xdata, 'valX_1024_10c')
dump(test_xdata, 'testX_1024_10c')
dump(train_ylabel, 'trainY_1024_10c')
dump(val_ylabel, 'valY_1024_10c')
dump(test_ylabel, 'testY_1024_10c')

1.2 数据加载,训练数据、测试数据分组,数据分batch

import torch
from joblib import dump, load
import torch.utils.data as Data
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
# 参数与配置
torch.manual_seed(100)  # 设置随机种子,以使实验结果具有可重复性
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 有GPU先用GPU训练

# 加载数据集
def dataloader(batch_size, workers=2):
    # 训练集
    train_xdata = load('trainX_1024_10c')
    train_ylabel = load('trainY_1024_10c')
    # 验证集
    val_xdata = load('valX_1024_10c')
    val_ylabel = load('valY_1024_10c')
    # 测试集
    test_xdata = load('testX_1024_10c')
    test_ylabel = load('testY_1024_10c')

    # 加载数据
    train_loader = Data.DataLoader(dataset=Data.TensorDataset(train_xdata, train_ylabel),
                                   batch_size=batch_size, shuffle=True, num_workers=workers, drop_last=True)
    val_loader = Data.DataLoader(dataset=Data.TensorDataset(val_xdata, val_ylabel),
                                 batch_size=batch_size, shuffle=True, num_workers=workers, drop_last=True)
    test_loader = Data.DataLoader(dataset=Data.TensorDataset(test_xdata, test_ylabel),
                                  batch_size=batch_size, shuffle=True, num_workers=workers, drop_last=True)
    return train_loader, val_loader, test_loader

batch_size = 32
# 加载数据
train_loader, val_loader, test_loader = dataloader(batch_size)

2 LSTM分类模型和超参数选取

2.1 定义LSTM分类模型

注意:输入数据进行了堆叠 ,把一个1*1024 的序列 进行划分堆叠成形状为 32 * 32, 就使输入序列的长度降下来了

2.2 定义模型参数

# 定义模型参数
batch_size = 32
input_dim = 32   # 输入维度为一维信号序列堆叠为 32 * 32
hidden_layer_sizes = [256, 128, 64]
output_dim = 10

model = LSTMclassifier(batch_size, input_dim, hidden_layer_sizes, output_dim)  
# 定义损失函数和优化函数
model = model.to(device)
loss_function = nn.CrossEntropyLoss(reduction='sum')  # loss
learn_rate = 0.003
optimizer = torch.optim.Adam(model.parameters(), learn_rate)  # 优化器

2.3 模型结构

3 LSTM模型训练与评估

3.1 模型训练

训练结果

200个epoch,准确率将近96%,LSTM网络分类模型效果良好,继续调参还可以进一步提高分类准确率。

注意调整参数:

  • 可以适当增加 LSTM层数 和每层神经元个数,微调学习率;

  • 增加更多的 epoch (注意防止过拟合)

  • 可以改变一维信号堆叠的形状(设置合适的长度和维度)

3.2 模型评估

# 模型 测试集 验证  
import torch.nn.functional as F
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 有GPU先用GPU训练

# 加载模型
# model =torch.load('best_model_lstm.pt')
model = torch.load('best_model_lstm.pt', map_location=torch.device('cpu'))

# 将模型设置为评估模式
model.eval()
# 使用测试集数据进行推断
with torch.no_grad():
    correct_test = 0
    test_loss = 0
    for test_data, test_label in test_loader:
        test_data, test_label = test_data.to(device), test_label.to(device)
        test_output = model(test_data)
        probabilities = F.softmax(test_output, dim=1)
        predicted_labels = torch.argmax(probabilities, dim=1)
        correct_test += (predicted_labels == test_label).sum().item()
        loss = loss_function(test_output, test_label)
        test_loss += loss.item()

test_accuracy = correct_test / len(test_loader.dataset)
test_loss = test_loss / len(test_loader.dataset)
print(f'Test Accuracy: {test_accuracy:4.4f}  Test Loss: {test_loss:10.8f}')

Test Accuracy: 0.9570  Test Loss: 0.12100271

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1303400.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Qt Widgets 绘图行为逐步分析拆解

Qt 是目前C语言首选的框架库。之所以称为框架库而不单单是GUI库,是因为Qt提供了远远超过GUI的功能封装,即使不使用GUI的后台服务,也可以用Qt大大提高跨平台的能力。 仅就界面来说,Qt 保持各个平台绘图等效果的统一,并…

【EMNLP 2023】面向垂直领域的知识预训练语言模型

近日,阿里云人工智能平台PAI与华东师范大学数据科学与工程学院合作在自然语言处理顶级会议EMNLP2023上发表基于双曲空间和对比学习的垂直领域预训练语言模型。通过比较垂直领域和开放领域知识图谱数据结构的不同特性,发现在垂直领域的图谱结构具有全局稀…

Flink之迟到的数据

迟到数据的处理 推迟水位线推进: WatermarkStrategy.<Event>forBoundedOutOfOrderness(Duration.ofSeconds(2))设置窗口延迟关闭&#xff1a;.allowedLateness(Time.seconds(3))使用侧流接收迟到的数据: .sideOutputLateData(lateData) public class Flink12_LateDataC…

【华为数据之道学习笔记】3-9元数据治理面临的挑战

华为在进行元数据治理以前&#xff0c;遇到的元数据问题主要表现为数据找不到、读不懂、不可信&#xff0c;数据分析师们往往会陷入数据沼泽中&#xff0c;例如以下常见的场景。 某子公司需要从发货数据里对设备保修和维保进行区分&#xff0c;用来不对过保设备进行服务场景分析…

uniapp - 简单版本自定义tab栏切换

tab切换是APP开发最常见的功能之一&#xff0c;uniapp中提供了多种形式的tab组件供我们使用。对于简单的页面而言&#xff0c;使用tabbar组件非常方便快捷&#xff0c;可以快速实现底部导航栏的效果。对于比较复杂的页面&#xff0c;我们可以使用tab组件自由定义样式和内容 目录…

Spring 的缓存机制【记录】

一、背景 在最近的业务需求开发过程中遇到了“传说中”的循环依赖问题&#xff0c;在之前学习Spring的时候经常会看到Spring是如何解决循环依赖问题的&#xff0c;所谓循环依赖即形成了一个环状的依赖关系&#xff0c;这个环中的某一个点产生不稳定变化都会导致整个链路产生不…

WPF仿网易云搭建笔记(5):信息流控制之IOC容器

文章目录 专栏和Gitee仓库前言IOC容器Prism IOC使用声明两个测试的服务类MainWindow IOC 注入[单例]MainWindow里面获取UserController无法使用官方解决方案 使用自定义IOC容器&#xff0c;完美解决既然Prism不好用&#xff0c;直接上微软的IOC解决方案App.xaml.csViewModel里面…

axios 基础的 一次封装 二次封装

一、平常axios的请求发送方式 修改起来麻烦的一批 代码一大串 二、axios的一次封装 我们会在src/utils创建一个request.js的文件来存放我们的基地址与拦截器 /* 封装axios用于发送请求 */ import axios from axios/* (1)request 相当于 Axios 的实例对象 (2)为什么要有reque…

python自动化测试实战 —— WebDriver API的使用

软件测试专栏 感兴趣可看&#xff1a;软件测试专栏 自动化测试学习部分源码 python自动化测试相关知识&#xff1a; 【如何学习Python自动化测试】—— 自动化测试环境搭建 【如何学习python自动化测试】—— 浏览器驱动的安装 以及 如何更…

Web安全-SQL注入【sqli靶场第11-14关】(三)

★★实战前置声明★★ 文章中涉及的程序(方法)可能带有攻击性&#xff0c;仅供安全研究与学习之用&#xff0c;读者将其信息做其他用途&#xff0c;由用户承担全部法律及连带责任&#xff0c;文章作者不承担任何法律及连带责任。 0、总体思路 先确认是否可以SQL注入&#xff0…

深拷贝、浅拷贝 react的“不可变值”

知识获取源–晨哥&#xff08;现实中的人 嘿嘿&#xff09; react中如果你想让一个值始终不变 或者说其他操作不影响该值 它只是作用初始化的时候 使用了浅拷贝–改变了初始值 会改变初始值(selectList1) 都指向同一个地址 const selectList1 { title: 大大, value: 1 };con…

ES-分析器

分析器 两种常用的英语分析器 1 测试工具 #可以通过这个来测试分析器 实际生产环境中我们肯定是配置在索引中来工作 GET _analyze {"text": "My Moms Son is an excellent teacher","analyzer": "english" }2 实际效果 比如我们有下…

前端框架(Front-end Framework)和库(Library)的区别

聚沙成塔每天进步一点点 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 欢迎来到前端入门之旅&#xff01;感兴趣的可以订阅本专栏哦&#xff01;这个专栏是为那些对Web开发感兴趣、刚刚踏入前端领域的朋友们量身打造的。无论你是完全的新手还是有一些基础的开发…

基于OpenCV+CNN+IOT+微信小程序智能果实采摘指导系统——深度学习算法应用(含python、JS工程源码)+数据集+模型(三)

目录 前言总体设计系统整体结构图系统流程图 运行环境Python环境TensorFlow 环境Jupyter Notebook环境Pycharm 环境微信开发者工具OneNET云平台 模块实现1. 数据预处理1&#xff09;爬取功能2&#xff09;下载功能 2. 创建模型并编译1&#xff09;定义模型结构2&#xff09;优化…

appium安卓app自动化,遇到搜索框无搜索按钮元素时无法搜索的解决方案

如XX头条&#xff0c;搜索框后面有“搜索”按钮&#xff0c;这样实现搜索操作较为方便。 但有些app没有设置该搜索按钮&#xff0c;初学者就要花点时间去学习怎么实现该功能了&#xff0c;如下图。 这时候如果定位搜索框&#xff0c;再点击操作&#xff0c;再输入文本后&#x…

java工程(ajax/axios/postman)向请求头中添加消息

1、问题概述 在项目中我们经常会遇到需要向请求头中添加消息的场景&#xff0c;然后后端通过request.getRequest()或者RequestHeader获取请求头中的消息。 下面提供几种前端向请求头添加消息的方式 2、创建一个springmvc工程用于测试 2.1、创建工程并引入相关包信息 sprin…

Maven项目引入本地jar

Maven项目引入本地jar 1.对应maven模块项目中建lib目录&#xff0c;将jar放入进去 2.在对应的模块pom.xml中引入此依赖jar 3.在对应的maven-plugin插件打包的pom.xml中指定需要includeSystemScope为true的jar

做数据分析为何要学统计学(10)——如何进行时间序列分析

时间序列是由随时间变化的值构成&#xff0c;如产品销量、气温数据等等。通过对时间序列展开分析&#xff0c;能够回答如下问题&#xff1a; &#xff08;1&#xff09;被研究对象的活动特征是否有周期性&#xff08;也称季节性&#xff09;&#xff08;2&#xff09;被研究对…

strict-origin-when-cross-origin

严格限制同源策略 &#xff08;1&#xff09;允许服务器的同源IP地址访问 &#xff08;2&#xff09;允许Referer --- 后端服务器要配置

2023年阿里云云栖大会-核心PPT资料下载

一、峰会简介 历经14届的云栖大会&#xff0c;是云计算产业的建设者、推动者、见证者。2023云栖大会以“科技、国际、年轻”为基调&#xff0c;以“计算&#xff0c;为了无法计算的价值”为主题&#xff0c;发挥科技平台汇聚作用&#xff0c;与云计算全产业链上下游的先锋代表…