智能优化算法应用:基于教与学算法3D无线传感器网络(WSN)覆盖优化 - 附代码

news2024/11/26 9:47:38

智能优化算法应用:基于教与学算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于教与学算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.教与学算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用教与学算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 ,   d ( n , p ) ≤ R n 0 ,   e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f   d ( n o d e i , p ) ≤ r 0 ,   e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.教与学算法

教与学算法原理请参考:https://blog.csdn.net/u011835903/article/details/107861628
教与学算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径


教与学算法参数如下:

%% 设定教与学优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明教与学算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1301081.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

gin投票系统3

对应视频v1版本 1.优化登陆接口 将同步改为异步 原login前端代码&#xff1a; <!doctype html> <html lang"en"> <head><meta charset"utf-8"><title>香香编程-投票项目</title> </head> <body> <m…

分支和回溯

题目&#xff1a;四皇后问题 解空间&#xff1a;四维向量x1,x2,x3,x4 四叉树&#xff1a;定义 每一个节点向下分叉 有四个 就是四叉树 第一个皇后第二个皇后第三个皇后第四个皇后1111222233334444 第一个皇后第二个皇后第三个皇后第四个皇后可行&#xff1f;1324x 2 3 反斜线…

初识Ceph --组件、存储类型、存储原理

目录 ceph组件存储类型块存储文件存储对象存储 存储过程 ceph Ceph&#xff08;分布式存储系统&#xff09;是一个开源的分布式存储系统&#xff0c;设计用于提供高性能、高可靠性和可扩展性的存储服务&#xff0c;可以避免单点故障&#xff0c;支持块存储、对象存储以及文件系…

在IDEA中创建Maven项目时没有src文件、不自动配置文件

错误示例&#xff1a; 没有src文件&#xff0c;并且没有自动下载相关的配置文件 对我这中情况无效的解决办法&#xff1a; ①配置好下列图中圈出来的文件 ②在VM选项中输入&#xff1a;“-DarchetypeInternal” ③点击应用&#xff0c;再点击确定 ④还是不行 解决办法&#x…

为 Compose MultiPlatform 添加 C/C++ 支持(2):在 jvm 平台使用 jni 实现桌面端与 C/C++ 互操作

前言 在上篇文章中我们已经介绍了实现 Compose MultiPlatform 对 C/C 互操作的基本思路。 并且先介绍了在 kotlin native 平台使用 cinterop 实现与 C/C 的互操作。 今天这篇文章将补充在 jvm 平台使用 jni。 在 Compose MultiPlatform 中&#xff0c;使用 jvm 平台的是 An…

React antd如何实现<Upload>组件上传附件再次上传已清除附件缓存问题

最近遇到一个React上传组件的问题&#xff0c;即上传附件成功后&#xff0c;文件展示处仍然还有之前上传附件的缓存信息&#xff0c;需要解决的问题是&#xff0c;要把上一次上传的附件缓存在上传成功或者取消后&#xff0c;可以进行清除 经过一顿试错&#xff0c;终于解决了这…

模块一——双指针:611.有效三角形的个数

文章目录 题目描述算法原理解法一&#xff1a;暴力求解(超时&#xff09;解法二&#xff1a;排序&#xff0b;双指针 代码实现 题目描述 题目链接&#xff1a;611.有效三角形的个数 算法原理 解法一&#xff1a;暴力求解(超时&#xff09; 三层for循环枚举出所有的三元组&…

Linux常见压缩指令小结

为什么需要压缩技术 我们都知道文件是以byte作为单位的&#xff0c;如果我们的文件仅仅在低位占一个1 0000 0001这种情况我们完全可以压缩一下&#xff0c;将高位的0全部抹掉即可。 如上所说是一种压缩技术&#xff0c;还有一种就是将1111(此处省略96个)一共100个1&#xff0…

键盘打字盲打练习系列之成为大师——5

一.欢迎来到我的酒馆 盲打&#xff0c;成为大师&#xff01; 目录 一.欢迎来到我的酒馆二.关于盲打你需要知道三.值得收藏的练习打字网站 二.关于盲打你需要知道 盲打系列教程&#xff0c;终于写到终章了。。。一开始在看网上视频&#xff0c;看到up主熟练的打字技巧&#xff…

mapstruct个人学习记录

mapstruct核心技术学习 简介入门案例maven依赖 IDEA插件单一对象转换测试结果 mapping属性Spring注入的方式测试 集合的映射set类型的映射测试map类型的映射测试 MapMappingkeyDateFormatvalueDateFormat 枚举映射基础入门 简介 在工作中&#xff0c;我们经常要进行各种对象之…

综述 2022-Genome Biology:“AI+癌症multi-omics”融合方法benchmark

Leng, Dongjin, et al. "A benchmark study of deep learning-based multi-omics data fusion methods for cancer." Genome biology 23.1 (2022): 1-32. 被引次数&#xff1a;34作者单位 红色高亮表示写论文中可以借鉴的地方 一、方法和数据集 1. 3个数据集&…

【数学建模】《实战数学建模:例题与讲解》第八讲-回归分析(含Matlab代码)

【数学建模】《实战数学建模&#xff1a;例题与讲解》第八讲-回归分析&#xff08;含Matlab代码&#xff09; 回归分析基本概念经典多元线性回归&#xff08;MLR&#xff09;主成分回归&#xff08;PCR&#xff09;偏最小二乘回归&#xff08;PLS&#xff09;建模过程应用和优势…

Vue3中的defineModel

目录 一、vue3的defineModel介绍 二、defineModel使用 &#xff08;1&#xff09;在vite.config.js中开启 &#xff08;2&#xff09;子组件 &#xff08;3&#xff09;父组件 一、vue3的defineModel介绍 为什么要使用到defineModel呢&#xff1f;这里有这样一种场景&…

面向对象类的设计和实现

实验目标 本实验任务是实现 Java 类的设计和实现&#xff0c;实验任务是根据每年新生的报到流程&#xff0c; 设计一 个学生管理系统&#xff0c;实现学生的注册和报到功能。设置类的基本属性&#xff0c;实现 getter 和 setter 方 法&#xff0c;通过 set 方法设置…

【第三届】:“玄铁杯”RISC-V应用创新大赛(基于yolov5和OpenCv算法 — 智能警戒哨兵)

文章目录 前言 一、智能警戒哨兵是什么&#xff1f; 二、方案流程图 三、硬件方案 四、软件方案 五、演示视频链接 总结 前言 最近参加了第三届“玄铁杯”RISC-V应用创新大赛&#xff0c;我的创意题目是基于 yolov5和OpenCv算法 — 智能警戒哨兵 先介绍一下比赛&#xf…

FFmpeg抽取视频h264数据重定向

根据视频重定向技术解析中的 截获解码视频流的思路&#xff0c;首先需要解决如何输出视频码流的问题。 目前只针对h264码流进行获取&#xff0c;步骤如下&#xff1a; 打开mp4文件并创建一个空文件用于存储H264数据 提取一路视频流资源 循环读取流中所有的包(AVPacket),为…

pytorch中的归一化:BatchNorm、LayerNorm 和 GroupNorm

1 归一化概述 训练深度神经网络是一项具有挑战性的任务。 多年来&#xff0c;研究人员提出了不同的方法来加速和稳定学习过程。 归一化是一种被证明在这方面非常有效的技术。 1.1 为什么要归一化 数据的归一化操作是数据处理的一项基础性工作&#xff0c;在一些实际问题中&am…

【c++随笔16】reserve之后,使用std::copy会崩溃?

【c随笔16】reserve之后&#xff0c;使用std::copy会崩溃? 一、reserve之后&#xff0c;使用std::copy会崩溃?二、函数std::reserve、std::resize、std::copy1、std::resize&#xff1a;2、std::reserve&#xff1a;3、std::copy&#xff1a; 三、崩溃原因分析方案1、你可以使…

【概率方法】重要性采样

从一个极简分布出发 假设我们有一个关于随机变量 X X X 的函数 f ( X ) f(X) f(X)&#xff0c;满足如下分布 p ( X ) p(X) p(X)0.90.1 f ( X ) f(X) f(X)0.10.9 如果我们要对 f ( X ) f(X) f(X) 的期望 E p [ f ( X ) ] \mathbb{E}_p[f(X)] Ep​[f(X)] 进行估计&#xff0…

极速学习SSM之SpringMVC笔记

文章目录 一、SpringMVC简介1、什么是MVC2、什么是SpringMVC3、SpringMVC的特点 二、HelloWorld1、开发环境2、创建maven工程a>添加web模块b>打包方式&#xff1a;warc>引入依赖 3、配置web.xmla>默认配置方式b>扩展配置方式 4、创建请求控制器5、创建springMVC…