【图像分类】【深度学习】【Pytorch版本】 DenseNet模型算法详解

news2024/11/16 6:36:07

【图像分类】【深度学习】【Pytorch版本】 DenseNet模型算法详解

文章目录

  • 【图像分类】【深度学习】【Pytorch版本】 DenseNet模型算法详解
  • 前言
  • DenseNet讲解
    • Dense Block(稠密块)
    • Dense Layer(稠密层)
    • Transition Layer 过渡层
    • DenseNet模型结构
  • DenseNet Pytorch代码
  • 完整代码
  • 附加代码
  • 总结


前言

DenseNet是康奈尔大学的Huang, Gao等人在《Densely Connected Convolutional Networks【CVPR-2017】》【论文地址】一文中提出的模型,受ResNet基本思路启发,将前面所有网络层输出特征与后面网络层输出特征进行密集连接(而非相加)从而实现特征重用,减少了参数量和计算成本并达到了显著的效果。


DenseNet讲解

随着卷积神经网络的网络层越来越深入,出现了新的研究问题:当输入(前向传播)或梯度(反向传播)的信息经过许多层时,信息可能会在到达网络末尾或起始时消失并“冲洗掉”,即网络退化问题。尽管不同的方法在网络拓扑和训练过程方面有所不同,但是都具有一个关键特点:这些方法创建了从浅层到深层的短路径。

从深度方向研究,ResNet【参考】解决了深层网络梯度消失问题;从宽度方向研究,GoogleNet【参考】解决了宽度增加时的计算和参数量的问题。DenseNet则是是从特征的角度入手,通过对特征的极致利用达到更好的效果和减少参数。

DenseNet架构将这种见解(关键特点)提炼为简单的连接模式:为了确保最大程度的信息在网络中各层之间流动,将所有层(相匹配的特征图大小)彼此直接连接。为了保留前馈特性,每个层都从所有先前的图层获取附加输入,并将其自身的特征图传递给所有后续层。

与ResNets将特征传递到图层之前通过求和来组合特征相比,DenseNet通过级联特征来组合它们。因此,第 L L L层具有 L L L个输入,由所有前面的卷积块的特征图组成。

Dense Block(稠密块)

DenseBlock包含很多互相连接的DenseLayer层,每个层的输出特征图大小相同,这样才可以在通道上进行连结,具体来说就是每一层的输入都来自于它前面所有层的特征,每一层的输出均会直接连接到它后面所有层的输入,层与层之间采用密集连接方式。

所以对于 L L L层的DenseBlock,采用密集连接方式共包含 L ( L + 1 ) 2 \frac{{L\left( {L + 1} \right)}}{2} 2L(L+1)个连接(等差数列求和公式),相比 L L L层的ResNetBlock则只包含 ( L − 1 ) × 2 + 1 \left( {L - 1} \right) \times 2 + 1 (L1)×2+1个连接。DenseNet与ResNet最主要的区别在于DenseBlock是直接concat来自不同层的特征图实现特征重用,即对不同“级别”的不同表征进行总体性地再探索,提升效率;ResNetBlock是直接add上一层的特征图实现特征融合,将之前层次的信息直接传递给后续层次,解决梯度消失问题。
ResNet和DenseNet对比如下图所示:

  • ResNet: 传统的卷积前馈网络将第 ℓ t h {\ell ^{{\rm{th}}}} th层的输出 x ℓ {x_\ell} x作为输入连接到第 ( ℓ + 1 ) t h {(\ell + 1)^{{\rm{th}}}} (+1)th层得到输出 x ℓ + 1 = H ℓ + 1 ( x ℓ ) {x_{\ell + 1}} = {H_{\ell + 1}}({x_\ell}) x+1=H+1(x),ResNet增加了一个跳跃连接(通过一个恒等函数绕过非线性转换),得到输出 x ℓ + 1 = H ℓ + 1 ( x ℓ ) + x ℓ {x_{\ell + 1}} = {H_{\ell + 1}}({x_\ell }) + {x_\ell } x+1=H+1(x)+x
  • DenseNet: 为了进一步改进层之间的信息流,将任何层直接连接到所有后续层,将第 1 t h {1^{{\rm{th}}}} 1th, 2 t h {2^{{\rm{th}}}} 2th, 3 t h {3 ^{{\rm{th}}}} 3th ℓ t h {\ell ^{{\rm{th}}}} th层的输出 x 1 {x_1} x1, x 2 {x_2} x2, x 3 {x_3} x3 x ℓ {x_\ell} x作为输入连接到第${(\ell
    • 1)^{{\rm{th}}}} 层得到输出 层得到输出 层得到输出{x_{\ell + 1}} = {H_{\ell + 1}}(\left[ {{x_1},{x_2},{x_3}…{x_\ell }} \right])$

H ℓ + 1 ( ∙ ) {H_{\ell +1}}( \bullet ) H+1()定义为三个连续操作的复合函数:批量归一化层(BN)、激活函数(ReLU)[6]和卷积层(Conv)。

增长率 如果每一个DenseLayer H ℓ ( ∙ ) {H_\ell}( \bullet ) H()生成 k k k个特征图,则第 ℓ \ell 层具有 k 0 + k ( ℓ − 1 ) {k_0} + k\left( {\ell - 1} \right) k0+k(1)个特征图,其中 k 0 k_0 k0是输入DenseBlock的特征图数量, k k k指的是网络的超参数增长率。每个DenseLayer都可以访问其块中的所有先前的特征图(即网络的“集体知识”),这些特征图被视为网络的全局状态,每个DenseLayer都将自己 k k k个特征图添加到全局状态,因此增长率控制着每一层为全局状态贡献多少新信息。写入后的全局状态可以在网络中的任何位置进行访问,并且与传统的网络体系结构不同,无需将其逐层复制。

DenseNet与现有网络体系结构之间的一个重要区别是DenseNet具有通道非常狭窄的DenseLayer,通常DenseBlock起始的DenseLayer就是通道就十分狭窄( k = 12 k=12 k=12),因为要考虑后续DenseLayer的增长。

Dense Layer(稠密层)

DenseLayer中采用的BN+ReLU+Conv的结构模式,不同于常见的是Conv+BN+ReLU,这是因为稠密层的输入包含了之前所有稠密层的输出特征,这些来自不同层的输出数值分布差异比较大,因此在输入到DenseLayer的Conv层之前,必须先经过BN层将其数值进行标准化,然后再进行卷积操作。
DenseLayer中采用BN+ReLU+1x1 Conv+BN+ReLU+3x3 Conv的结构:

瓶颈层 尽管每个DenseLayer仅产生 k k k个输出特征图,但由于密集连接模式,DenseLayer通常会有更多的输入。因此为了减少参数,DenseLayer在3×3卷积之前引入1×1卷积作为瓶颈层,以减少输入特征图的数量,从而提高计算效率。

Transition Layer 过渡层

TransitionLayer进行卷积和池化以起到整合压缩的作用:卷积网络的重要组成部分是降低特征图尺寸的下采样层。为了便于DenseNet结构进行下采样,将DenseNet划分为为多个DenseBlock,TransitionLayer主要用于连接两个相邻的DenseBlock,整合前一个DenseBlock输出的特征,通过下采样缩小前一个DenseBlock的征图尺寸。
TransitionLayer中采用BN+ReLU+1x1 Conv+ 2x2 AvgPooling的结构:

压缩 为了进一步提高DenseNet的紧凑性,可以减少TransitionLayer的特征图数量。如果DenseBlock输出 m m m个特征图,则让之后的TransitionLayer输出 θ m {\theta _m} θm个特征图。其中 0 < θ m ≤ 1 0 < {\theta _m} \le 1 0<θm1称为压缩因子。当 θ m = 1 {\theta _m}=1 θm=1时,TransitionLayer的特征图数量与DenseBlock的保持不变。

DenseNet模型结构

下图是原论文给出的关于DenseNet模型结构的详细示意图:

Resnet在图像分类中分为两部分:backbone部分: 主要由卷积层、池化层(汇聚层)、稠密块和过渡层组成,分类器部分:由全局平均池化层和全连接层组成 。


DenseNet Pytorch代码

稠密层Dense Layer: BN+ReLU+1x1 Conv+BN+ReLU+3x3 Conv

class DenseLayer(nn.Module):
    """Basic unit of DenseBlock (DenseLayer) """
    def __init__(self, input_c, growth_rate, bn_size, drop_rate):
        super(DenseLayer, self).__init__()

        self.bn1 = nn.BatchNorm2d(input_c)
        self.relu1 = nn.ReLU()
        self.conv1 = nn.Conv2d(input_c, bn_size * growth_rate,
                               kernel_size=1, stride=1, bias=False)

        self.bn2 = nn.BatchNorm2d(bn_size * growth_rate)
        self.relu2 = nn.ReLU()
        self.conv2 = nn.Conv2d(bn_size * growth_rate, growth_rate,
                               kernel_size=3, stride=1, padding=1, bias=False)
        self.drop_rate = drop_rate

    def forward(self, x):
        # 1×1卷积 bottleneck瓶颈层
        output = self.bn1(x)
        output = self.relu1(output)
        output = self.conv1(output)
        # 3×3卷积
        output = self.bn2(output)
        output = self.relu2(output)
        output = self.conv2(output)

        if self.drop_rate > 0:
            output = F.dropout(output, p=self.drop_rate)
        return torch.cat([x, output], 1)

稠密块DenseBlock: 由多个稠密层组成

class DenseBlock(nn.Module):
    def __init__(self, num_layers, input_c, bn_size, growth_rate, drop_rate):
        super(DenseBlock, self).__init__()
        for i in range(num_layers):
            layer = DenseLayer(input_c + i * growth_rate,
                                growth_rate=growth_rate,
                                bn_size=bn_size,
                                drop_rate=drop_rate)
            self.add_module("denselayer%d" % (i + 1), layer)
    def forward(self, init_features):
        features = [init_features]
        for name, layer in self.items():
            # 当前DenseLayer的输出特征
            new_features = layer(features)
            # 拼接所有DenseLayer的输出特征
            features.append(new_features)
        return torch.cat(features, 1)

过渡层TransitionLayer : BN+ReLU+1x1 Conv+ 2x2 AvgPooling

class Transition(nn.Module):
    def __init__(self, input_c, output_c):
        super(Transition, self).__init__()
        self.bn = nn.BatchNorm2d(input_c)
        self.relu = nn.ReLU(inplace=True)
        # 1×1卷积
        self.conv = nn.Conv2d(input_c, output_c,
                              kernel_size=1, stride=1, bias=False)
        # 2×2池化
        self.pool = nn.AvgPool2d(2, stride=2)

    def forward(self, input):
        output = self.bn(input)
        output = self.relu(output)
        output = self.conv(output)
        output = self.pool(output)
        return output

完整代码

import torch
import torch.nn as nn
import torch.nn.functional as F
from torchsummary import summary
class DenseLayer(nn.Module):
    """Basic unit of DenseBlock (DenseLayer) """
    def __init__(self, input_c, growth_rate, bn_size, drop_rate):
        super(DenseLayer, self).__init__()

        self.bn1 = nn.BatchNorm2d(input_c)
        self.relu1 = nn.ReLU(inplace=True)
        self.conv1 = nn.Conv2d(input_c, bn_size * growth_rate,
                               kernel_size=1, stride=1, bias=False)

        self.bn2 = nn.BatchNorm2d(bn_size * growth_rate)
        self.relu2 = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(bn_size * growth_rate, growth_rate,
                               kernel_size=3, stride=1, padding=1, bias=False)
        self.drop_rate = drop_rate

    def forward(self, inputs):
        # 1×1卷积 bottleneck瓶颈层
        output = self.bn1(inputs)
        output = self.relu1(output)
        output = self.conv1(output)
        # 3×3卷积
        output = self.bn2(output)
        output = self.relu2(output)
        output = self.conv2(output)

        if self.drop_rate > 0:
            output = F.dropout(output, p=self.drop_rate)
        return output

class DenseBlock(nn.ModuleDict):
    def __init__(self, num_layers, input_c, bn_size, growth_rate, drop_rate):
        super(DenseBlock, self).__init__()
        for i in range(num_layers):
            layer = DenseLayer(input_c + i * growth_rate,
                                growth_rate=growth_rate,
                                bn_size=bn_size,
                                drop_rate=drop_rate)
            self.add_module("denselayer%d" % (i + 1), layer)
    def forward(self, init_features):
        features = [init_features]
        for name, layer in self.items():
            concat_features = torch.cat(features, 1)
            # 当前DenseLayer的输出特征
            new_features = layer(concat_features)
            # 收集所有DenseLayer的输出特征
            features.append(new_features)
        return torch.cat(features, 1)

class Transition(nn.Module):
    def __init__(self, input_c, output_c):
        super(Transition, self).__init__()
        self.bn = nn.BatchNorm2d(input_c)
        self.relu = nn.ReLU(inplace=True)
        # 1×1卷积
        self.conv = nn.Conv2d(input_c, output_c,
                              kernel_size=1, stride=1, bias=False)
        # 2×2池化
        self.pool = nn.AvgPool2d(2, stride=2)

    def forward(self, input):
        output = self.bn(input)
        output = self.relu(output)
        output = self.conv(output)
        output = self.pool(output)
        return output


class DenseNet(nn.Module):
    def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16), num_init_features=64, bn_size=4,
                 compression_rate=0.5, drop_rate=0, num_classes=1000):
        super(DenseNet, self).__init__()

        # 前部 conv+bn+relu+pool
        self.features = nn.Sequential(
            # 第一层
            nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False),
            nn.BatchNorm2d(num_init_features),
            nn.ReLU(inplace=True),
            # 第二层
            nn.MaxPool2d(3, stride=2, padding=1)
        )

        # 中部 DenseBlock
        num_features = num_init_features
        for i, num_layers in enumerate(block_config):
            block = DenseBlock(num_layers=num_layers,
                               input_c=num_features,
                               bn_size=bn_size,
                               growth_rate=growth_rate,
                               drop_rate=drop_rate)
            # 新增DenseBlock
            self.features.add_module("denseblock%d" % (i + 1), block)
            # 更新通道数
            num_features = num_features + num_layers * growth_rate

            # 除去最后一层DenseBlock不需要加Transition来连接两个相邻的DenseBlock
            if i != len(block_config) - 1:
                transition = Transition(input_c=num_features, output_c=int(num_features * compression_rate))
                # 添加Transition
                self.features.add_module("transition%d" % (i + 1), transition)
                # 更新通道数
                num_features = int(num_features * compression_rate)

        # 后部 bn+ReLU
        self.tail = nn.Sequential(
            nn.BatchNorm2d(num_features),
            nn.ReLU(inplace=True)
        )

        # 分类器 classification
        self.classifier = nn.Linear(num_features, num_classes)

        # 初始化权重
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.constant_(m.bias, 0)

    def forward(self, x):
        features = self.features(x)
        tail_output = self.tail(features)
        # 平均池化
        out = F.adaptive_avg_pool2d(tail_output, (1, 1))
        out = torch.flatten(out, 1)
        out = self.classifier(out)
        return out

def densenet121(**kwargs):
    # Top-1 error: 25.35%
    # 'densenet121': 'https://download.pytorch.org/models/densenet121-a639ec97.pth'
    return DenseNet(growth_rate=32,
                    block_config=(6, 12, 24, 16),
                    num_init_features=64,
                    bn_size=4,
                    compression_rate=0.5,
                    **kwargs)
def densenet169(**kwargs):
    # Top-1 error: 24.00%
    # 'densenet169': 'https://download.pytorch.org/models/densenet169-b2777c0a.pth'
    return DenseNet(growth_rate=32,
                    block_config=(6, 12, 32, 32),
                    num_init_features=64,
                    bn_size=4,
                    compression_rate=0.5,
                    **kwargs)

def densenet201(**kwargs):
    # Top-1 error: 22.80%
    # 'densenet201': 'https://download.pytorch.org/models/densenet201-c1103571.pth'
    return DenseNet(growth_rate=32,
                    block_config=(6, 12, 48, 32),
                    num_init_features=64,
                    bn_size=4,
                    compression_rate=0.5,
                    **kwargs)


def densenet161(**kwargs):
    # Top-1 error: 22.35%
    # 'densenet161': 'https://download.pytorch.org/models/densenet161-8d451a50.pth'
    return DenseNet(growth_rate=48,
                    block_config=(6, 12, 36, 24),
                    num_init_features=96,
                    bn_size=4,
                    compression_rate=0.5,
                    **kwargs)

if __name__ == '__main__':
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    model = densenet121().to(device)
    summary(model, input_size=(3, 224, 224))

summary可以打印网络结构和参数,方便查看搭建好的网络结构。


附加代码

由于需要进行多次Concatnate操作,数据需要被复制多次,显存容易增加得很快,需要一定的显存优化技术。这里博主提供了优化后的代码。

import re

from collections import OrderedDict
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as cp
from torchsummary import summary

class _DenseLayer(nn.Module):
    def __init__(self,
                 input_c,
                 growth_rate,
                 bn_size,
                 drop_rate,
                 memory_efficient= False):
        super(_DenseLayer, self).__init__()

        self.add_module("norm1", nn.BatchNorm2d(input_c))
        self.add_module("relu1", nn.ReLU(inplace=True))

        self.add_module("conv1", nn.Conv2d(in_channels=input_c,
                                           out_channels=bn_size * growth_rate,
                                           kernel_size=1,
                                           stride=1,
                                           bias=False))

        self.add_module("norm2", nn.BatchNorm2d(bn_size * growth_rate))
        self.add_module("relu2", nn.ReLU(inplace=True))
        self.add_module("conv2", nn.Conv2d(bn_size * growth_rate,
                                           growth_rate,
                                           kernel_size=3,
                                           stride=1,
                                           padding=1,
                                           bias=False))
        self.drop_rate = drop_rate
        self.memory_efficient = memory_efficient

    def bn_function(self, inputs):
        # 1×1卷积
        bottleneck_output = self.conv1(self.relu1(self.norm1(inputs)))
        return bottleneck_output

    # 所有连接都能保留梯度,否则不进行梯度更新
    def any_requires_grad(inputs):
        for tensor in inputs:
            if tensor.requires_grad:
                return True
        return False

    # 本函数主要是为了网络训练阶段高效内存管理
    def call_checkpoint_bottleneck(self, inputs):
        def closure(*inp):
            return self.bn_function(inp)
        return cp.checkpoint(closure, *inputs)

    def forward(self, inputs):
        if self.memory_efficient and self.any_requires_grad(inputs):
            # 即非部署阶段
            if torch.jit.is_scripting():
                raise Exception("memory efficient not supported in JIT")
            bottleneck_output = self.call_checkpoint_bottleneck(inputs)
        else:
            bottleneck_output = self.bn_function(inputs)

        # 3×3卷积
        new_features = self.conv2(self.relu2(self.norm2(bottleneck_output)))
        # 随机失活
        if self.drop_rate > 0:
            new_features = F.dropout(new_features,
                                     p=self.drop_rate,
                                     training=self.training)
        return new_features

class _DenseBlock(nn.ModuleDict):
    _version = 2

    def __init__(self,
                 num_layers,
                 input_c,
                 bn_size,
                 growth_rate,
                 drop_rate,
                 memory_efficient=False):
        super(_DenseBlock, self).__init__()
        for i in range(num_layers):
            layer = _DenseLayer(input_c + i * growth_rate,
                                growth_rate=growth_rate,
                                bn_size=bn_size,
                                drop_rate=drop_rate,
                                memory_efficient=memory_efficient)
            self.add_module("denselayer%d" % (i + 1), layer)

    def forward(self, init_features):
        features = [init_features]
        for name, layer in self.items():
            concat_features = torch.cat(features, 1)
            new_features = layer(concat_features)
            features.append(new_features)
        return torch.cat(features, 1)

class _Transition(nn.Sequential):
    def __init__(self,
                 input_c,
                 output_c):
        super(_Transition, self).__init__()
        self.add_module("norm", nn.BatchNorm2d(input_c))
        self.add_module("relu", nn.ReLU(inplace=True))
        self.add_module("conv", nn.Conv2d(input_c,
                                          output_c,
                                          kernel_size=1,
                                          stride=1,
                                          bias=False))
        self.add_module("pool", nn.AvgPool2d(kernel_size=2, stride=2))


class DenseNet(nn.Module):
    def __init__(self,
                 growth_rate=32,
                 block_config=(6, 12, 24, 16),
                 num_init_features=64,
                 bn_size=4,
                 compression_rate=0.5,
                 drop_rate=0,
                 num_classes=1000,
                 memory_efficient= False):
        super(DenseNet, self).__init__()

        # 前部 conv+bn+relu+pool
        self.features = nn.Sequential(OrderedDict([
            ("conv0", nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)),
            ("norm0", nn.BatchNorm2d(num_init_features)),
            ("relu0", nn.ReLU(inplace=True)),
            ("pool0", nn.MaxPool2d(kernel_size=3, stride=2, padding=1)),
        ]))

        # 中部 DenseBlock
        num_features = num_init_features
        for i, num_layers in enumerate(block_config):
            block = _DenseBlock(num_layers=num_layers,
                                input_c=num_features,
                                bn_size=bn_size,
                                growth_rate=growth_rate,
                                drop_rate=drop_rate,
                                memory_efficient=memory_efficient)
            self.features.add_module("denseblock%d" % (i + 1), block)
            # 更新通道数
            num_features = num_features + num_layers * growth_rate
            # 除去最后一层DenseBlock不需要加Transition来连接两个相邻的DenseBlock
            if i != len(block_config) - 1:
                trans = _Transition(input_c=num_features,
                                    output_c=num_features // 2)
                self.features.add_module("transition%d" % (i + 1), trans)
                # 更新通道数
                num_features = int(num_features * compression_rate)

        # 后部 bn+ReLU
        self.tail = nn.Sequential(
            nn.BatchNorm2d(num_features),
            nn.ReLU(inplace=True)
        )

        # 分类器 classification
        self.classifier = nn.Linear(num_features, num_classes)

        # 初始化权重
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.constant_(m.bias, 0)

    def forward(self, x):
        features = self.features(x)
        tail_output = self.tail(features)
        # 平均池化
        out = F.adaptive_avg_pool2d(tail_output, (1, 1))
        out = torch.flatten(out, 1)
        out = self.classifier(out)
        return out


def densenet121(**kwargs):
    # Top-1 error: 25.35%
    # 'densenet121': 'https://download.pytorch.org/models/densenet121-a639ec97.pth'
    return DenseNet(growth_rate=32,
                    block_config=(6, 12, 24, 16),
                    num_init_features=64,
                    bn_size=4,
                    compression_rate=0.5,
                    **kwargs)


def densenet169(**kwargs):
    # Top-1 error: 24.00%
    # 'densenet169': 'https://download.pytorch.org/models/densenet169-b2777c0a.pth'
    return DenseNet(growth_rate=32,
                    block_config=(6, 12, 32, 32),
                    num_init_features=64,
                    bn_size=4,
                    compression_rate=0.5,
                    **kwargs)


def densenet201(**kwargs):
    # Top-1 error: 22.80%
    # 'densenet201': 'https://download.pytorch.org/models/densenet201-c1103571.pth'
    return DenseNet(growth_rate=32,
                    block_config=(6, 12, 48, 32),
                    num_init_features=64,
                    bn_size=4,
                    compression_rate=0.5,
                    **kwargs)


def densenet161(**kwargs):
    # Top-1 error: 22.35%
    # 'densenet161': 'https://download.pytorch.org/models/densenet161-8d451a50.pth'
    return DenseNet(growth_rate=48,
                    block_config=(6, 12, 36, 24),
                    num_init_features=96,
                    bn_size=4,
                    compression_rate=0.5,
                    **kwargs)

if __name__ == '__main__':
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    model = densenet121().to(device)
    summary(model, input_size=(3, 224, 224))

总结

尽可能简单、详细的介绍了稠密结构的原理和在卷积神经网络中的作用,讲解了DenseNet模型的结构和pytorch代码。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1299425.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

DM8/达梦 数据库管理员使用手册详解

1.1DM客户端存放位置 Windows&#xff1a;DM数据库安装目录中tool文件夹和bin文件夹中。 Linux&#xff1a;DM数据库安装目录中tool目录和bin目录中。 1.2DM数据库配置助手 1.2.1Windows创建数据库 打开数据库配置助手dbca 点击创建数据库实例 选择一般用途 浏览选择数据库…

【基于大数据的人肥胖程度预测分析与可控策略】

基于大数据的人肥胖程度预测分析与可控策略 前言数据获取与清洗数据挖掘与分类建模1. K-means聚类2. 层次聚类3. DBSCAN4. 分类建模 数据可视化模型肥胖程度预测分析与可控策略结语 前言 随着现代生活方式的改变&#xff0c;肥胖问题逐渐成为全球性的健康挑战。为了更好地理解…

湖科大计网:计算机网络概述

一、计算机网络的性能指标 一、速率 有时候数据量也认为是以10为底的&#xff0c;看怎么好算。&#xff08;具体吉大考试用什么待商榷&#xff09; 二、带宽 在模拟信号系统中带宽的含义&#xff0c;本课程中用到的地方是&#xff1a;香农定理和奈奎斯特定理公式的应用之中。 …

未用的引脚如何处理?--持续更新中

前言&#xff1a; 随着集成电路规模的越来越大&#xff0c;如今的大规模芯片都集成了很多功能模块&#xff0c;但是在实际的电路设计中我们又不可能把芯片所有的功能模块(或者说接口)全部用上&#xff0c;因此总会有或多或少的管脚会“用不上”&#xff0c;那这些未用的管脚一般…

maven上传jar包到代码仓库

一、前言 一般被引用的包开发都是要求放在nexus仓库中&#xff0c;等到有jar包服务需要引用该包的时候直接从nexus仓库中获取即可&#xff0c;实现了该引用包的公用 二、代码配置 编辑代码中的pom.xml文件配置 vi pom.xml <distributionManagement><repository>&…

网络安全行业大模型调研总结

随着人工智能技术的发展&#xff0c;安全行业大模型SecLLM&#xff08;security Large Language Model&#xff09;应运而生&#xff0c;可应用于代码漏洞挖掘、安全智能问答、多源情报整合、勒索情报挖掘、安全评估、安全事件研判等场景。 本文首先介绍汇总了安全行业的大模型…

Java、JDK、JRE、JVM

Java、JDK、JRE、JVM 一、 Java 广义上看&#xff0c;Kotlin、JRuby等运行于Java虚拟机上的编程语言以及相关的程序都属于Java体系的一员。从传统意义上看&#xff0c;Java社区规定的Java技术体系包括以下几个部分&#xff1a; Java程序设计语言各种硬件平台上的Java虚拟机实…

Linux 进程终止

引入 在写 C 语言程序的时候&#xff0c;我们必写的结构就是&#xff1a; int main() {return 0; }在学习 C 语言的时候&#xff0c;我们好像并没有讨论过这个 return 0 有什么用&#xff0c;是干什么的&#xff01;return 1 可以吗&#xff1f;return 的返回值给谁看&#x…

英伟达危机大爆发!一夜之间,四面楚歌

今年以来&#xff0c;AI大模型明争暗斗、百花齐放。 但不管各种大模型打的有多厉害&#xff0c;很多人都认为“卖铲子”的英伟达才是最大赢家。 看一下英伟达今年的股票就知道英伟达赚的是多么盆满钵满。 英伟达CEO黄仁勋在发布 H200显卡时&#xff0c;应该是今年最意气风发的…

Swagger2的使用

手写Api文档的几个痛点&#xff1a; 文档需要更新的时候&#xff0c;需要再次发送一份给前端&#xff0c;也就是文档更新交流不及时。 接口返回结果不明确 不能直接在线测试接口&#xff0c;通常需要使用工具&#xff0c;比如postman 接口文档太多&#xff0c;不好管理 Sw…

Linux:进程优先级与命令行参数

目录 1.进程优先级 1.1 基本概念 1.2 查看系统进程 1.3 修改进程优先级的命令 2.进程间切换 2.1 相关概念 2.2 Linux2.6内核进程调度队列&#xff08;了解即可&#xff09; 3.命令行参数 1.进程优先级 1.1 基本概念 cpu资源分配的先后顺序&#xff0c;就是指进程的优…

探秘机器学习核心逻辑:梯度下降的迭代过程 (图文详解)

一 需求解函数 f() 和 g()函数分别为求y值和求导数的函数。 目的&#xff1a;求该函数的最小值&#xff1a; 代码&#xff1a; import numpy as np import matplotlib.pyplot as plt f lambda x : (x - 3.5) ** 2 - 4.5 * x 10 g lambda x : 2 * (x - 3.5) - 4.5x np.l…

class064 Dijkstra算法、分层图最短路【算法】

class064 Dijkstra算法、分层图最短路【算法】 算法讲解064【必备】Dijkstra算法、分层图最短路 code1 743. 网络延迟时间 // Dijkstra算法模版&#xff08;Leetcode&#xff09; // 网络延迟时间 // 有 n 个网络节点&#xff0c;标记为 1 到 n // 给你一个列表 times&…

一个或多个筛选器或者Listeners启动失败 的问题

核心&#xff1a; 这个就是有好多情况会导致这个问题&#xff0c;像是文件找不到&#xff0c;缺少jar包等原因&#xff0c;还是要看报错的具体信息。 报错情况&#xff1a; 一个或多个listeners启动失败&#xff0c;更多详细信息查看对应的容器日志文件 由于之前的错误&#x…

Flutter视频播放器在iOS端和Android端都能实现全屏播放

Flutter开发过程中&#xff0c;对于视频播放的三方组件有很多&#xff0c;在Android端适配都挺好&#xff0c;但是在适配iPhone手机的时候&#xff0c;如果设置了UIInterfaceOrientationLandscapeLeft和UIInterfaceOrientationLandscapeRight都为false的情况下&#xff0c;无法…

基于lambda简化设计模式

前言 虽说使用设计模式可以让复杂的业务代码变得清晰且易于维护&#xff0c;但是某些情况下&#xff0c;开发可能会遇到我为了简单的业务逻辑去适配设计模式的情况&#xff0c;本文笔者就以四种常见的设计模式为例&#xff0c;演示如何基于lambda来简化设计模式的实现。 策略…

postgresql自带指令命令系列二

简介 在安装postgresql数据库的时候会需要设置一个关于postgresql数据库的PATH变量 export PATH/home/postgres/pg/bin:$PATH&#xff0c;该变量会指向postgresql安装路径下的bin目录。这个安装目录和我们在进行编译的时候./configure --prefix [指定安装目录] 中的prefix参…

TypeScript中的单件设计模式

基本概念 &#xff08;1&#xff09; 了解设计模式 设计模式通俗的讲&#xff0c;就是一种更好的编写代码方案&#xff0c;打个比喻&#xff1a;从上海到武汉&#xff0c;你可以选择做飞机&#xff0c;做轮船&#xff0c;开车&#xff0c;骑摩托车多种方式&#xff0c;把出行…

【Kubernetes】四层代理Service

Service四层代理 一、Service概念原理1.1、为什么要有Service1.2、Service概述1.3、工作原理1.4、三类IP地址【1】Node Network&#xff08;节点网络&#xff09;【2】Pod network&#xff08;pod 网络&#xff09;【3】Cluster Network&#xff08;服务网络&#xff09; 二、S…

四川技能大赛——2023年四川网信人才技能大赛(网络安全管理员赛项)决赛

四川技能大赛——2023年四川网信人才技能大赛&#xff08;网络安全管理员赛项&#xff09;决赛 文章目录 四川技能大赛——2023年四川网信人才技能大赛&#xff08;网络安全管理员赛项&#xff09;决赛C1-比64少的bas - DONEC2-affine - DONEC3-简单的RSA - DONEM1-不要动我的f…