Autosar UDS-CAN诊断开发02-1(CAN诊断帧格式类型详解、CANFD诊断帧格式类型详解、15765-2(CANTP层)的意义)

news2024/11/17 13:54:50

目录

前言

CANTP层(15765-2协议)存在的意义

CANTP层(15765-2协议)帧类型详细解读(普通CAN格式)

四种诊断报文类型

单帧SingleFrame(SF)

首帧:FirstFrame(FF)

流控帧:FlowControl(FC)  

连续帧:ConsecutiveFrame(CF)

中间小结 

CANTP层(15765-2协议)帧类型详细解读(CANFD格式)

差异点:单帧SingleFrame(SF)

差异点:首帧FirstFrame(FF)

结束


前言

         我们先来看一下诊断报文数据Log:

        上面图中,红色为诊断仪(Canoe或Canpro)发,蓝色为ECU发。

        我刚开始接触诊断的时候。

        看着这些密密麻麻的数据一脸茫然,由于经常能听到同事们在说19服务,所以我知道19服务读DTC,但Canoe发出的19 0A前面为啥还有个0x02?为什么ECU先返回了一帧然后再返回后面的多帧?为什么中间还夹这一帧Canoe发出来的?30 00 14又是啥意思?多帧的数据要怎么看啊,全部数据都是跟DTC故障有关吗?

        真的是小小的脑袋大大的问号。

        ...

        后来我才知道,这一切的由来都是15765-2协议。上面这个流程中,诊断仪和ECU间为什么是这样交互,所有数据中与诊断服务无关的其它数据分别代表什么意思,15765-2中全都有详细的定义。


CANTP层(15765-2协议)存在的意义

        先看一下在Autosar架构中,CANTP层在诊断链路中的位置:

        要理解为什么诊断报文的链路需要CANTP层(15765-2协议)。

        我们可以先看一下普通应用报文的链路:

                应用报文链路:CAN->CANIF->PDUR->COM->APP

        你会发现,应用报文其实很简单。它没有什么协议,收到什么就直接解读就好了。

        比如,车企定义了0x123报文中的Byte0的8个字节为电池的温度,那么当ECU收到0x123报文的时候,直接把Byte0的8个字节读取出来就直接是电池的温度了。换句话说,应用报文的发送和接收是没有什么协议的。

        由于应用报文没有什么协议,因此,应用报文传输数据就完全受限制于物理层的CAN协议(11898),一帧CAN报文的长度最大是CANFD的64Byte,再多就不行了。

        因此,15765-2协议的主要目的就是实现多帧传输。

CANTP层(15765-2协议)帧类型详细解读(普通CAN格式)

四种诊断报文类型

        我们先来看一下诊断报文都有哪些类型:

        这个图简单一眼看过去,初学者肯定不是那么好理解,所以我们提取一些关键信息来看。(先把普通CAN格式的诊断报文提取出来看一下,下图没框出来的就是CANFD格式的,后面再讲)

        从上面图中红色框出来的地方可以看出。诊断报文的类型共有4种。分别叫做:

                        单帧:SingleFrame(SF)

                        首帧:FirstFrame(FF)

                        连续帧:ConsecutiveFrame(CF)

                        流控帧:FlowControl(FC)

        我们暂时先不管他们具体的意义以及什么情况下才发出来。先从上面图中看看每种诊断报文的类型都有什么不同的地方。(注意,上面标准规范里面的图中的Byte#1是起始字节,对应我们口头常说的报文的Byte0起始字节。)

        以下面这张图为栗子,接下来分别讲解各个帧类型的差异。再次注意,下面图中Tx表示诊断仪(Canpro或Canoe)发出去,Rx表示ECU接收到诊断仪请求后ECU返回的数据。

单帧SingleFrame(SF)

        如下图:

        另外说明,后面的无效数据“AA AA ...”叫做填充字节(具体我们后面再讲,现在只要知道它是无效数据就好了。 

        单帧:Byte#1的低4位填写要发送的有效数据长度(SF_DL),Byte#1的高4位固定为0。

首帧:FirstFrame(FF)

        如下图:

        这里它要发送23个Byte的有效数据,但很明显,这一帧里只跟着6个有效Byte。因此还剩下17个Byte的有效数据没发完,它后面要发的数据叫做连续帧。

        首帧:Byte#1的高4位固定为1。Byte#1的低4位和Byte#2的8位共同填写要发送的诊断有效数据长度(SF_DL)。

流控帧:FlowControl(FC)  

        如果流控帧这一部分看不懂,大家可以先看下面的连续帧,然后再反回来看这里流控帧。因为所谓流控,就是控制连续帧的发送。

        如下图:

        下面我们依次讲解FS、BS、STmin这3个的含义

        FS:FlowStatus,即流控状态。它只有3个值:

                FS=0:允许对方继续发送

                FS=1:等待

                FS=2:溢出

                一般来说,我们只会看到FS为0的状态。知道FS等于0表示能继续发送就好了。(其它两个值我到目前为止还没看到出现这种情况)

                关于FS的官方标准如下(大家随便看看就好了):

        BS:BlockSize,即允许对方一次发送连续帧的数量。

                如果发送流控帧的这方发送的BS为0x00,则表示发送流控帧的这方可以接收无穷多的数据,对方只需要把所有要发送的数据全部发过来就好了。

                比如下面这里:

                我们另外再举一个BS不等于0x00的例子。如下面这里,BS=0x01,表示一次对方只能发送1帧数据过来:

        关于BS的官方解释如下(大家也随便看看就好了):

        STmin:SeparationTime minimum,即要求对方发送连续帧的最小时间间隔。

                如下面这张图,STmin=0x0A,即10ms。也就是说,对方发送的连续帧每帧的时间间隔最小是10ms。

                 官方解释如下(也是随便看看就好了)

连续帧:ConsecutiveFrame(CF)

        如下图:

         Byte#1的低四位叫做SN。Byte#1的高4位固定为2。

        SN:SequenceNumber,即当前连续帧的帧数。该值从0-15循环,但是第一帧连续帧的值是从1开始。

        官方解释如下:

        说人话其实就是,叫做SN的这4个Bit,发出第一帧连续帧的时候是1,如果连续帧的数据量很大,比如由上百个Byte,那么,当SN等于15之后的下一帧,就再从0开始,然后不断循环,并且中间不受流控帧的影响。 


中间小结 

        看完上面普通CAN格式的诊断报文类型

        我们另外再补充一个与协议无关的知识点:诊断仪与ECU的关系

        在诊断交互中,诊断仪永远是主动方,ECU永远是被动方。

        理解起来也很简单:ECU不可能能主动发数据给诊断仪说:“诊断仪,你快来读读我的DTC故障状态吧。诊断仪,你快来给我升级下软件吧...”。要是真这样,那真的是智能觉醒了。

        所以,在诊断交互中,第一帧肯定是诊断仪发出去的。

        好了,补充了这个知识点。我再贴一遍一开始那张密密麻麻数据的图

        这次,虽然里面诊断服务的数据的具体含义你不理解,但是你是不是已经能看懂整个交互流程了?

        讲完15765-2中普通CAN格式帧的诊断报文类型,我们接下来再看看CANFD格式帧的诊断报文类型。

        虽然普通CAN和CANFD的诊断报文格式差异其实不大。

        但是大家做Autosar诊断开发的时候,一定要知道诊断报文要有CANFD格式的。

        我之前做CANFD格式的诊断报文的时候,我感觉明明已经完成了整个CANFD诊断报文的开发链路,但是我用CANoe发送诊断请求的时候,ECU死活没有反应,然后各种调试,最后才发现,原来CANFD格式的诊断报文跟CAN格式的诊断报文的发送数据内容是不一样的。

        也就是说,对于CANFD诊断格式的ECU,如果你还用诊断仪按照普通CAN格式的方式发送诊断请求报文,ECU就不会响应你,这并不是ECU坏了或没开发对,而是你没按照人家的协议要求发数据。

        这可真的坑死我了。

        好了,话不多说,我们接下来看下CANFD格式的诊断报文类型。


CANTP层(15765-2协议)帧类型详细解读(CANFD格式)

         从上面图中可以看到,CAN格式和CANFD格式的差异是SF(单帧)、FF(首帧)的差异,连续帧和流控帧是没有差异的。

        关于CANFD格式的诊断报文类型就不详细讲了,只讲于普通CAN有差异地方对比。

        再次说明:上面标准规范里面的图中的Byte#1是起始字节,对应我们口头常说的报文的Byte0起始字节。

差异点:单帧SingleFrame(SF)

        普通CAN:Byte0的高4位固定为0,低4位表示有效数据长度

        CANFD:Byte0的高4位、低4位都固定为0,Byte1表示有效数据长度

差异点:首帧FirstFrame(FF)

        普通CAN:Byte0的高4位固定为1。Byte0低4位和Byte1的8位是一个整体,表示要发送的有效数据长度。

        CANFD:Byte0的高4位固定为1、Byte0低4位和Byte1的高4位都固定为0。Bye1的第4位、Byte2、3、4、5是一个整体,表示要发送的有效数据长度。


结束

        关于诊断报文CANTP层的存在意义和诊断报文的类型就讲到这里了,下一章我们讲一下诊断仪和ECU的交互流程中的帧类型使用情况


 返回目录:

Autosar BSW 开发笔记(目录)-CSDN博客

       

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1298968.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【LabVIEW学习】5.数据通信之TCP协议,控制电脑的一种方式

一。tcp连接以及写数据(登录) 数据通信--》协议--》TCP 1.tcp连接 创建while循环,中间加入事件结构,创建tcp连接,写入IP地址与端口号 2.写入tcp数据 登录服务器除了要知道IP地址以及端口以外,需要用户名与密…

【Deeplearning4j】小小的了解下深度学习

文章目录 1. 起因2. Deeplearning4j是什么3. 相关基本概念4. Maven依赖5. 跑起来了,小例子!6. 鸢尾花分类代码 7. 波士顿房价 回归预测代码 8. 参考资料 1. 起因 其实一直对这些什么深度学习,神经网络很感兴趣,之前也尝试过可能因…

栈和队列的互相实现

用队列实现栈 OJ链接 请你仅使用两个队列实现一个后入先出(LIFO)的栈,并支持普通栈的全部四种操作(push、top、pop 和 empty)。 实现 MyStack 类: void push(int x) 将元素 x 压入栈顶。int pop() 移除并返…

Transformer 简介

Transformer 是 Google 在 2017 年底发表的论文 Attention Is All You Need 中所提出的 seq2seq 模型。Transformer 模型的核心是 Self-Attention 机制,能够处理输入序列中的每个元素,并能计算其与序列中其他元素的交互关系的方法,从而能够更…

【Linux】make/Makefile --- 自动化构建项目的工具

目录 一、make/Makefile的简单使用 二、Makefile 的语法规则 三、实现的原理 3.1 make/Makefile识别文件新旧 3.2 .PHONY修饰的伪目标总是被执行 3.3 make/Makefile是具有依赖性的推导能力的 四、语法技巧 五、注意事项 Linux中自动化构建项目最简单的方式:…

shiro Filter加载和执行 源码解析

一、背景 在使用若依框架(前后端不分离包含shiro安全框架)时,发现作者添加了验证码、登录帐号控制等自定义过滤器,于是对自定的过滤器加载和执行流程产生疑问。下面以验证码过滤器为例,对源码解析。注意类之间的继承关…

Kubernetes入门笔记 ——(3)理解pod对象

为什么需要pod 最为熟知的一句话:pod是k8s的最小调度单位。刚开始听到这句话时会想,已经有容器了,k8s为什么还要搞个pod出来?容器和pod是什么关系?容器的本质是进程,而k8s本质上类似操作系统。 熟悉Linux的…

导入PR的视频画面是黑屏的怎么办?

在现代视频编辑领域中,越来越多的人使用Adobe Premiere Pro来编辑和制作视频,但是在某些情况下,用户可能需要透明背景的视频进行创作,那么如何创作透明背景的视频呢? 要制作具有透明背景的视频,我们需要使…

科技改变旅游,道观漫游可视化:智能化管理助力道观游览

道观漫游可视化是一种通过技术手段实现道观游览的可视化展示方式,让游客能够更加直观地了解道观的历史、文化和建筑特色。 随着旅游业的不断发展,道观漫游可视化已经成为了旅游行业中的一个重要方向,吸引了越来越多的游客前来体验。 道观漫游…

5. Jetson Orin Nano CUDA 配置

5. Jetson Orin Nano CUDA 配置 1:安装Jtop jtop安装主要有以下三个步骤: 安装pip3 我们需要使用pip3来安装jtop,所以先安装pip3 sudo apt install python3-pip安装jtop sudo -H pip3 install -U jetson-stats运行jtop服务 sudo -H pip3 in…

芯片量产导入知识

什么是芯片量产 从芯片功能设计到生产制造、测试等环节,每一个环节都至关重要。 对于保障大规模发货后芯片指标表现的一致性,以及产品应用生命周期内的稳定性和可靠性,需要考虑多种因素。以下是一些相关的观点: 可量产性设计&am…

C语言趣练习:两个字符串不用strcmp函数怎么比较大小

目录 1习题一:两个字符串不用strcmp函数怎么比较大小,并输出其差值 2不用strcpy函数将s2字符串中内容复制到s1中 3译密码问题 4总结: 1习题一:两个字符串不用strcmp函数怎么比较大小,并输出其差值 解题思路&#x…

redis 三主三从高可用集群docker swarm

由于数据量过大,单个Master复制集难以承担,因此需要对多个复制集进行集群,形成水平扩展每个复制集只负责存储整个数据集的一部分,这就是Redis的集群,其作用是提供在多个Redis节点间共享数据的程序集。 官网介绍地址 re…

【Python】手把手教你用tkinter设计图书管理登录UI界面(一)

下一篇: 本项目将分段设计“图书管理登录UI界面”的用户登录、用户注册、用户账号找回等。主要围绕GUI标准库tkinter、以及类的继承(重点)来设计本项目。 首先新建一个文件夹命名为“图书管理系统项目”,并在其目录下新建文件co…

LV.13 D1 嵌入式系统移植导学 学习笔记

一、嵌入式系统分层 操作系统:向下管理硬件、向上提供接口 操作系统为我们提供了: 1.进程管理 2.内存管理 3.网络接口 4.文件系统 5.设备管理 那系统移植是干什么呢? 就是将Linux操作系统移植到基于ARM处理器的开发板中。 那为什么要移植系…

PHP基础 - 注释变量

一. 语言开始标识 在PHP中,文件的开头需要使用语言开始标识来指定该文件是PHP代码。标识通常为"<?php",也可以是"<?",但建议使用"<?php"以确保代码的兼容性和可读性。 <?php // PHP代码从这里开始写 二. PHP注释 注释是用…

售权益网络科技的秦明军,创业计划的意义?

售权益网络科技的秦明军&#xff0c;创业计划的意义&#xff1f; 声明&#xff1a;本篇分享来自手机[售权益网络科技]蝴蝶号&#xff0c;严禁抄袭&#xff0c;复制&#xff0c;粘贴&#xff0c;以免发生著作版权纠纷&#xff01;创业计划对于创业者来说具有重要的意义&#xf…

微软 Power Platform 零基础 Power Pages 网页搭建高阶实际案例实践(四)

微软 Power Platform 零基础 Power Pages 网页搭建教程之高阶案例实践学习&#xff08;四&#xff09; Power Pages 实际案例学习进阶 微软 Power Platform 零基础 Power Pages 网页搭建教程之高阶案例实践学习&#xff08;四&#xff09;1、新增视图&#xff0c;添加List页面2…

OFDM模糊函数仿真

文章目录 前言一、OFDM 信号及模糊函数1、OFDM 信号表达式2、模糊函数表达式 二、MATLAB 仿真1、MATLAB 核心源码2、仿真结果①、OFDM 模糊函数②、OFDM 距离模糊函数③、OFDM 速度模糊函数 前言 本文进行 OFDM 的仿真&#xff0c;首先看一下 OFDM 的模糊函数仿真效果&#xf…

AcWing 93. 递归实现组合型枚举

Every day a AcWing 题目来源&#xff1a;93. 递归实现组合型枚举 解法1&#xff1a;回溯算法 标准的回溯算法模板题。 如果把 n、m 和数组 nums 都设置成全局变量的话&#xff0c;backtracking 回溯函数可以只用一个参数 level。 注意传参时 nums 不能用引用&#xff0c;…