视觉学习笔记12——百度飞浆框架的PaddleOCR 安装、标注、训练以及测试

news2025/1/20 5:44:49

系列文章目录

虚拟环境部署
参考博客1
参考博客2
参考博客3
参考博客4


文章目录

  • 系列文章目录
  • 一、简单介绍
    • 1.OCR介绍
    • 2.PaddleOCR介绍
  • 二、安装
    • 1.anaconda基础环境
      • 1)anaconda的基本操作
      • 2)搭建飞浆的基础环境
    • 2.安装paddlepaddle-gpu版本
      • 1)安装
      • 2)验证
    • 3.pip安装paddleocr whl包
      • 1)2.6版本的paddleocr安装
      • 2)验证
    • 4.安装PPOCRLabel
      • 1)2.6版本paddleocr和PPOCRLabel的版本对应
      • 2)2.7版本paddleocr和PPOCRLabel的版本对应
  • 三、PPOCRLabel标注
  • 四、PaddleOCR训练与测试
    • 1.文本检测模型训练与测试
      • 1)下载预训练模型
      • 2)修改参数配置文件
      • 3)可视化训练过程
      • 4)模型评估测试
    • 2.文本识别模型训练
      • 1)下载预训练模型
      • 2)修改参数配置文件
      • 3)可视化训练过程
      • 4)模型评估测试
  • 五、补充


一、简单介绍

1.OCR介绍

OCR(光学字符识别)是一种将图像中的文字自动转换为可编辑文本的技术。现在,各大厂商均有提供各种场景的OCR识别的API。但是,也有一些开源的OCR框架和工具,可以支持自我定制和训练,使得开发人员能够更加灵活地应对不同场景下的OCR需求。

OCR(光学字符识别)的简单实现流程通常包括以下步骤:

1、图像预处理:首先,对输入的图像进行预处理,包括灰度化、二值化、去噪等操作。这些操作有助于提高字符识别的准确性和稳定性。
2、文本区域检测:使用图像处理技术(如边缘检测、轮廓分析等),找到图像中可能包含文本的区域。这些区域通常是字符或文本行的边界。
3、字符分割:对于文本行,需要将其分割为单个字符。这可以通过字符之间的间距、连通性等特征进行分割。
4、特征提取:对于每个字符,提取其特征表示。常见的特征包括形状、角度、纹理等。特征提取有助于将字符转化为可供分类器处理的数值表示。
5、字符分类:使用分类器(如机器学习算法或深度学习模型)对提取的字符特征进行分类,将其识别为相应的字符类别。分类器可以是预训练模型,也可以是自定义训练的模型。
6、后处理:对识别的字符进行后处理,如纠正错误、校正倾斜、去除冗余等。这可以提高最终结果的准确性和可读性。
7、输出结果:将识别的字符组合成最终的文本输出,可以是单个字符、单词或完整的文本。

在这里插入图片描述

2.PaddleOCR介绍

飞桨首次开源文字识别模型套件PaddleOCR,目标是打造丰富、领先、实用的文本识别模型/工具库。 PaddleOCR是一个基于飞桨开发的OCR(Optical Character Recognition,光学字符识别)系统。其技术体系包括文字检测、文字识别、文本方向检测和图像处理等模块。以下是其优点:

高精度:PaddleOCR采用深度学习算法进行训练,可以在不同场景下实现高精度的文字检测和文字识别。

多语种支持:PaddleOCR支持多种语言的文字识别,包括中文、英文、日语、韩语等。同时,它还支持多种不同文字类型的识别,如手写字、印刷体、表格等。

高效性:PaddleOCR的训练和推理过程都采用了高效的并行计算方法,可大幅提高处理速度。同时,其轻量化设计也使得PaddleOCR能够在移动设备上进行部署,适用于各种场景的应用。

易用性:PaddleOCR提供了丰富的API接口和文档说明,用户可以快速进行模型集成和部署,实现自定义的OCR功能。同时,其开源代码也为用户提供了更好的灵活性和可扩展性。

鲁棒性:PaddleOCR采用了多种数据增强技术和模型融合策略,能够有效地应对图像噪声、光照变化等干扰因素,并提高模型的鲁棒性和稳定性。

总之,PaddleOCR具有高精度、高效性、易用性和鲁棒性等优点,为用户提供了一个强大的OCR解决方案。

对比其他开源的OCR项目:

优点:
轻量模型,执行速度快
支持pip直接安装
ocr识别效果好,效果基本可以比肩大厂收费ocr(非高精版)
支持表格和方向识别
支持补充训练且很方便

缺点:
部分符号识别效果一般,如 '|‘识别为’1’
对于部分加粗字体可能出现误识别,需要自己补充训练
偶尔会出现部分内容丢失的情况

二、安装

1.anaconda基础环境

1)anaconda的基本操作

查看conda环境:
conda info --envs

创建虚拟环境
conda create -n your_env_name python=x.x

激活或者切换虚拟环境
 source activate your_env_nam

 查看虚拟环境中的库
 conda list

关闭虚拟环境
source deactivate 

删除虚拟环境
conda remove -n your_env_name --all

2)搭建飞浆的基础环境

因为是新项目,所以专门使用anaconda搭建该项目的基本环境
使用anaconda的环境复制命令,复制一个已经安装好常用库的虚拟环境,这样就可以省下重新安装大部分库的工作了,可以参考虚拟环境部署

假设已有环境名为A,需要生成的环境名为B:(我自己用过,在同一台机器上克隆原始环境到另一个环境,挺好用的)
conda create -n B --clone A

比如:
conda create -n ocr --clone py36

2.安装paddlepaddle-gpu版本

1)安装

进入准备好的anaconda环境
根据对应的cuda和cudnn版本,安装对应的paddlepaddle版本
建议不要安装最新的paddlepaddle版本,我安装最新的一直失败
飞浆官网提供的旧版本安装命令

一定要根据自己的环境,选择正确的命令,比如:

# CUDA 10.2
python3 -m pip install paddlepaddle-gpu==2.4.2 -i https://pypi.tuna.tsinghua.edu.cn/simple

2)验证

验证安装是否成功,终端输入python,然后分别输入以下两行代码

import paddle
 
paddle.utils.run_check()

在这里插入图片描述

3.pip安装paddleocr whl包

1)2.6版本的paddleocr安装

推荐使用2.0.1+版本,最新版本为2.7,我选择2.6版本,但是2.6版本的paddleocr和PPOCRLabel之间出现一些未解决环境bug,所以关于2.6版本的paddleocr安装仅供参考,安装命令如下:

pip install "paddleocr>=2.6"

使用了以上命令安装却出现PyMuPDF错误,如下:

 Building wheel for PyMuPDF (setup.py) ... error
 ......
 ......
 ......
 ERROR: Failed building wheel for PyMuPDF

github查到具体解决方案

使用如下命令重新安装:

pip install "paddleocr>=2.6" --upgrade PyMuPDF==1.18.0

2)验证

首先使用以下命令查看虚拟环境中的paddleocr是不是2.6版本:

conda list

其次下载以下官方提供的推理测试模型进行测试:

det_model_dir是文本检测的位置,

rec_model_dir是文本识别的位置,

cls_model_dir是方向分类的位置,

最后使用以下代码,更新模型与图片路径进行测试:

import os
import time

from paddleocr import PaddleOCR
import pandas as pd
import numpy as np
import cv2


def ocr_predict(img):
    '''
    det_model_dir:文本检测
    rec_model_dir:文本识别
    cls_model_dir:方向分类
    '''
    ocr = PaddleOCR(det_model_dir="路径/det/ch/ch_PP-OCRv4_det_infer/",
                    rec_model_dir="路径/rec/ch/ch_PP-OCRv4_rec_infer/",
                    cls_model_dir="路径/cls/ch_ppocr_mobile_v2.0_cls_infer/",
                    lang='ch', use_angle_cls=True,
                    use_gpu=False)
    result = ocr.ocr(img)
    print(result)


if __name__ == '__main__':
    img_path = "路径/ys.jpeg"
    ocr_predict(img_path)

测试图片:

在这里插入图片描述

测试结果:

[[[[[57.0, 31.0], [977.0, 32.0], [977.0, 75.0], [57.0, 74.0]],
(‘椰树集团直接从椰子农户收购海南自种老椰子’, 0.98974609375)], [[[54.0, 93.0], [976.0,
95.0], [976.0, 138.0], [54.0, 136.0]], (‘每个致富价五元,比原来收购价提高两倍’, 0.994292140007019)], [[[172.0, 163.0], [855.0, 163.0], [855.0, 205.0], [172.0, 205.0]], (‘转手收购的椰子不享受致富价’, 0.9931609630584717)], [[[61.0,
230.0], [961.0, 230.0], [961.0, 309.0], [61.0, 309.0]], (‘致富价保证30年不降’, 0.9948785901069641)], [[[128.0, 341.0], [985.0, 341.0], [985.0, 380.0], [128.0, 380.0]], (‘为助力乡村经济振兴,响应省政府大力发展’, 0.9951123595237732)], [[[35.0, 394.0], [745.0, 394.0], [745.0, 437.0], [35.0, 437.0]],
(‘三棵树(椰子树、橡胶树、槟榔树)’, 0.9626081585884094)], [[[757.0, 396.0], [983.0,
396.0], [983.0, 436.0], [757.0, 436.0]], (‘的号召,让’, 0.9951451420783997)], [[[37.0, 451.0], [982.0, 451.0], [982.0, 490.0], [37.0, 490.0]], (‘农民致富,实现椰树集团年产值百亿元,打造’, 0.9915739893913269)],
[[[80.0, 507.0], [980.0, 507.0], [980.0, 546.0], [80.0, 546.0]],
(‘百年椰树”,决定从2021年7月10日开始按’, 0.981215238571167)], [[[33.0, 558.0],
[692.0, 562.0], [692.0, 604.0], [33.0, 601.0]], (‘致富价收购海南农民自种老椰子。’,
0.992202877998352)], [[[35.0, 629.0], [526.0, 629.0], [526.0, 654.0], [35.0, 654.0]], (‘四组收购地址:文昌市东郊镇码头村码头路113号’, 0.9902203679084778)],
[[[754.0, 630.0], [983.0, 630.0], [983.0, 652.0], [754.0, 652.0]],
(‘收购电话:13322039539’, 0.9966092109680176)], [[[35.0, 667.0], [327.0,
667.0], [327.0, 692.0], [35.0, 692.0]], (‘六组收购地址:琼海市合石村’, 0.99151611328125)], [[[754.0, 666.0], [985.0, 666.0], [985.0, 691.0], [754.0, 691.0]], (‘收购电话:13627592295’, 0.9962812662124634)], [[[35.0,
705.0], [562.0, 705.0], [562.0, 730.0], [35.0, 730.0]], (‘八组收购地址:文昌市东郊镇、万宁市长丰镇牛漏村’, 0.980197548866272)], [[[753.0, 704.0],
[983.0, 704.0], [983.0, 729.0], [753.0, 729.0]], (‘收购电话:13876033357’,
0.9965571165084839)], [[[34.0, 742.0], [398.0, 742.0], [398.0, 767.0], [34.0, 767.0]], (‘九组收购地址:文昌市东郊镇白石村’, 0.993116557598114)], [[[754.0,
743.0], [983.0, 743.0], [983.0, 765.0], [754.0, 765.0]], (‘收购电话:13976682778’, 0.9968530535697937)], [[[187.0, 780.0], [396.0,
780.0], [396.0, 805.0], [187.0, 805.0]], (‘文昌市会文镇冠南村’, 0.9976257681846619)], [[[753.0, 780.0], [986.0, 780.0], [986.0, 805.0], [753.0, 805.0]], (‘收购电话:18789985540’, 0.9975140690803528)], [[[35.0, 817.0], [727.0, 818.0], [727.0, 843.0], [35.0, 842.0]],
(‘十组收购地址:文昌市蓬莱镇绿涛收购点、琼海市塔洋镇里文收购点’, 0.9777908325195312)], [[[754.0,
819.0], [983.0, 819.0], [983.0, 841.0], [754.0, 841.0]], (‘收购电话:13907682168’, 0.9975283741950989)], [[[37.0, 856.0], [444.0,
856.0], [444.0, 881.0], [37.0, 881.0]], (‘十一组收购地址:文昌市铺前镇、万宁市’, 0.9792234897613525)], [[[753.0, 855.0], [982.0, 855.0], [982.0, 880.0], [753.0, 880.0]], (‘收购电话:13707557555’, 0.9971356987953186)]]]

4.安装PPOCRLabel

1)2.6版本paddleocr和PPOCRLabel的版本对应

以上完成了paddlepaddle和paddleocr的安装,并成功通过测试

接下来应该完成PPOCRLabel标注工具的安装与使用

打开paddleocr库选择2.6版本下载并解压
https://github.com/PaddlePaddle/PaddleOCR/archive/refs/heads/release/2.6.zip

接着直接进入PPOCRLabel文件夹:

cd PaddleOCR-release-2.6/PPOCRLabel

安装PPOCRLabel,为标注数据作准备,运行以下代码:

python setup.py bdist_wheel

该目录下dist文件夹中会生成一个whl文件
接着运行:

pip3 install dist/PPOCRLabel-2.1.3-py2.py3-none-any.whl

可能会提示缺少polygon 库,可以使用pip install Polygon3 -i https://pypi.tuna.tsinghua.edu.cn/simple命令安装。

如果还提示缺少其他包,同样是用pip install “packname” -i https://pypi.tuna.tsinghua.edu.cn/simple命令安装即可。

安装过程可能会出现的报错:

#无法导入str2int_tuple
ImportError: cannot import name 'str2int_tuple'

/anaconda3/envs/ocr/lib/python3.6/site-packages/paddleocr/tools/infer
目录下的utility.py文件内部缺少str2int_tuple函数,是因为源码安装与命令行安装的paddleocr所导致的,根据源码的utility.py文件去修改虚拟环境下的utility.py文件即可,主要进行以下修改:

# 查找str2bool函数
def str2bool(v):
    return v.lower() in ("true", "yes", "t", "y", "1")

#在str2bool函数后面添加str2int_tuple函数
def str2int_tuple(v):
    return tuple([int(i.strip()) for i in v.split(",")])

PPOCRLabel安装成功后,运行以下命令打开:

python PPOCRLabel --lang ch
或
PPOCRLabel --lang ch

在尝试打开PPOCRLabel时,出现了一个bug:

Got keys from plugin meta data ("xcb")
QFactoryLoader::QFactoryLoader() checking directory path "/anaconda3/envs/ocr/bin/platforms" ...
loaded library "/anaconda3/envs/ocr/lib/python3.8/site-packages/cv2/qt/plugins/platforms/libqxcb.so"
QObject::moveToThread: Current thread (0xeb24e0) is not the object's thread (0x5bcd480).
Cannot move to target thread (0xeb24e0)

qt.qpa.plugin: Could not load the Qt platform plugin "xcb" in "/anaconda3/envs/ocr/lib/python3.8/site-packages/cv2/qt/plugins" even though it was found.
This application failed to start because no Qt platform plugin could be initialized. Reinstalling the application may fix this problem.

Available platform plugins are: xcb, eglfs, linuxfb, minimal, minimalegl, offscreen, vnc, wayland-egl, wayland, wayland-xcomposite-egl, wayland-xcomposite-glx, webgl.

这是一个QT问题,很多人都遇见这个问题,常见的解决方法如下:

1、添加bashrc环境export QT_DEBUG_PLUGINS=1,查看是否缺少某些库文件,sudo apt-get install 安装补充
2、降低opencv-contrib-python和opencv-python的版本
3、调整pyqt5的版本或者使用conda安装不使用pip安装pyqt5
4、安装opencv-python-headless库
。。。。。。

我遇到的这个这个问题其实是pyqt5与cv2之间的冲突问题,pyqt5与anaconda3/envs/ocr/lib/python3.8/site-packages/cv2/qt/plugins/platforms发生了冲突,,以上的方法大多数也是倾向于解决掉cv2中的platforms。

官方提供的思路如下:

pip install opencv-python==4.2.0.32 -i https://pypi.tuna.tsinghua.edu.cn/simple

如果不想修改cv版本,那么就去把anaconda3/envs/ocr/lib/python3.8/site-packages/cv2/qt/plugins/platforms中的platforms重命名即可。

按理来说到这里就没有问题了,但是我在启动PPOCRLabel时又出现以下报错而且打不开PPOCRLabel,至今没有解决:

Got keys from plugin meta data ("xcb_glx")
QFactoryLoader::QFactoryLoader() checking directory path "/anaconda3/envs/ocr/bin/xcbglintegrations" ...
loaded library "/anaconda3/envs/ocr/lib/python3.8/site-packages/PyQt5/Qt5/plugins/xcbglintegrations/libqxcb-glx-integration.so"
[2023/12/06 09:42:12] ppocr WARNING: When args.layout is false, args.ocr is automatically set to false

折腾了几天后,觉得是2.6版本paddleocr和PPOCRLabel之间的bug导致的,因为使用2.7版本就能够打开PPOCRLabel。

2)2.7版本paddleocr和PPOCRLabel的版本对应

最新版本2.7,安装命令如下:

pip install "paddleocr==2.7"

与2.6版本的PPOCRLabel源码安装类似

打开paddleocr库选择2.7版本下载并解压

接着直接进入PPOCRLabel文件夹:

cd PaddleOCR-release-2.7/PPOCRLabel

安装PPOCRLabel,为标注数据作准备,运行以下代码:

python setup.py bdist_wheel

该目录下dist文件夹中会生成一个whl文件
接着运行:

#这里就有一些不同
pip3 install dist/paddleocr-2.7.0.1-py3-none-any.whl

可能会提示缺少polygon 库,可以使用pip install Polygon3 -i https://pypi.tuna.tsinghua.edu.cn/simple命令安装。

如果还提示缺少其他包,同样是用pip install “packname” -i https://pypi.tuna.tsinghua.edu.cn/simple命令安装即可。

PPOCRLabel安装成功后,运行以下命令打开:

python PPOCRLabel --lang ch
或
PPOCRLabel --lang ch

在尝试打开PPOCRLabel时,同样出现bug:

Got keys from plugin meta data ("xcb")
QFactoryLoader::QFactoryLoader() checking directory path "/anaconda3/envs/ocr/bin/platforms" ...
loaded library "/anaconda3/envs/ocr/lib/python3.8/site-packages/cv2/qt/plugins/platforms/libqxcb.so"
QObject::moveToThread: Current thread (0xeb24e0) is not the object's thread (0x5bcd480).
Cannot move to target thread (0xeb24e0)

qt.qpa.plugin: Could not load the Qt platform plugin "xcb" in "/anaconda3/envs/ocr/lib/python3.8/site-packages/cv2/qt/plugins" even though it was found.
This application failed to start because no Qt platform plugin could be initialized. Reinstalling the application may fix this problem.

Available platform plugins are: xcb, eglfs, linuxfb, minimal, minimalegl, offscreen, vnc, wayland-egl, wayland, wayland-xcomposite-egl, wayland-xcomposite-glx, webgl.

官方提供的思路如下:

pip install opencv-python==4.2.0.32 -i https://pypi.tuna.tsinghua.edu.cn/simple

如果不想修改cv版本,那么就去把anaconda3/envs/ocr/lib/python3.8/site-packages/cv2/qt/plugins/platforms中的platforms重命名即可。

启动PPOCRLabelPPOCRLabel --lang ch又出现以下报错:

Got keys from plugin meta data ("xcb_glx")
QFactoryLoader::QFactoryLoader() checking directory path "/anaconda3/envs/ocr/bin/xcbglintegrations" ...
loaded library "/anaconda3/envs/ocr/lib/python3.8/site-packages/PyQt5/Qt5/plugins/xcbglintegrations/libqxcb-glx-integration.so"
[2023/12/06 09:42:12] ppocr WARNING: When args.layout is false, args.ocr is automatically set to false

但是PPOCRLabel却能够成功开启。
在这里插入图片描述

三、PPOCRLabel标注

1)先命令行打开PPOCRLabel图形化界面

2)打开左上角的PaddleOCR选项列表,点击选择模型选项,然后选择中文&英文,确认
在这里插入图片描述

3)打开左上角的文件选项列表,点击打开目录选项,打开需要标注的图片所在文件夹

4)点击左下角的自动标注选项,PPOCRLabel会自动调用模型对每张图片进行标注,等待进度条100%,然后OK

在这里插入图片描述

5)自动标注结束以后,打开左上角的文件选项列表,点击导出标记结果导出识别结果选项

6)开始对每张图片进行检查,点击矩形标注多点标注选项,手动修改不好的检测框和标签,没问题的点击确认,不喜欢的点击删除图片选项,PPOCRLabel工具操作快捷键如下

在这里插入图片描述

7)标注结束以后,再次点击导出标记结果导出识别结果选项,然后检查图片文件夹中是否生成以下文件

文件名说明
Label.txt检测标签,可直接用于PPOCR检测模型训练。用户每确认5张检测结果后,程序会进行自动写入。当用户关闭应用程序或切换文件路径后同样会进行写入。
fileState.txt图片状态标记文件,保存当前文件夹下已经被用户手动确认过的图片名称。
Cache.cach缓存文件,保存模型自动识别的结果。
rec_gt.txt识别标签。可直接用于PPOCR识别模型训练。需用户手动点击菜单栏“文件” - "导出识别结果"后产生。
crop_img识别数据。按照检测框切割后的图片。与rec_gt.txt同时产生。

8)输入以下命令执行数据集划分脚本:

trainValTestRatio 是训练集、验证集、测试集的图像数量划分比例,根据实际情况设定,默认是6:2:2

datasetRootPath 是PPOCRLabel标注的完整数据集存放路径。默认路径是 PaddleOCR/train_data 分割数据集前

cd ./PPOCRLabel # 将目录切换到PPOCRLabel文件夹下
python gen_ocr_train_val_test.py --trainValTestRatio 6:2:2 --datasetRootPath /home/完整数据集存放路径/train_data

train_data格式如下:

|-train_data
 	  |-crop_img
		    |- 001_crop_0.png
		    |- 002_crop_0.jpg
		    |- 003_crop_0.jpg
		    | ...
	  | Label.txt
	  | rec_gt.txt
	  |- 001.png
	  |- 002.jpg
	  |- 003.jpg
	  | ...

划分好的数据集会保存在PaddleOCR/train_data下面

此时文字检测和文字识别的数据集就都制作好了。

四、PaddleOCR训练与测试

为了加强垂直领域或者说特殊环境下的检测能力,所以会专门使用对应环境的数据集进行训练,得到我们理想中的的模型。

1.文本检测模型训练与测试

根据官方文本检测教程中最简单直接的思路进行训练,至于其他训练方法可以深入参考官方教程。

1)下载预训练模型

准备好数据集后,可以下载模型预训练文件:

MobileNetV3_large_x0_5_pretrained模型下载

还可以选择以下模型:

# 下载MobileNetV3的预训练模型
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/pretrained/MobileNetV3_large_x0_5_pretrained.pdparams
# 或,下载ResNet18_vd的预训练模型
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/pretrained/ResNet18_vd_pretrained.pdparams
# 或,下载ResNet50_vd的预训练模型
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/pretrained/ResNet50_vd_ssld_pretrained.pdparams

下载之后在paddleocr根目录下建立pretrain_models文件夹,并将训练模型放在该文件夹下并解压。

2)修改参数配置文件

修改/PaddleOCR/configs/det目录下的det_mv3_db.yml,或者复制一份重命名。

有关配置文件各项参数的详细解释,请参考官方文档

部分常见配置的修改,建议根据各自训练环境自定义配置文件

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

python tools/train.py -c configs/llw/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MNV3_x0_5/MobileNetV3_large_x0_5_pretrained

如果提示RuntimeError: CUDA out of memory.就需要降低batch,或者清理GPU缓存,总会有奇奇怪怪的进程占着资源不放。

3)可视化训练过程

训练过程中,PaddleOCR文件夹下再开一个终端,输入以下命令+模型输出地址可视化训练过程:

visualdl --logdir "./output/db_mv3"

在这里插入图片描述

打开http://localhost:8040/,点击标量数据,即可看见实时信息

在这里插入图片描述

4)模型评估测试

评估模型,输入以下命令:

python tools/eval.py -c configs/det/det_mv3_db.yml  -o Global.checkpoints=./output/db_mv3/best_accuracy

在这里插入图片描述

对训练好的模型导出导出到/inference/det_db文件夹下,输入以下命令

python tools/export_model.py -c configs/det/det_mv3_db_ocr.yml -o Global.pretrained_model=./output/db_mv3/best_accuracy  Global.save_inference_dir=./inference/det_db

最后使用以下代码,把自己训练的模型更新到det_model_dir,进行测试:

import os
import time

from paddleocr import PaddleOCR
import pandas as pd
import numpy as np
import cv2


def ocr_predict(img):
    '''
    det_model_dir:文本检测
    rec_model_dir:文本识别
    cls_model_dir:方向分类
    '''
    ocr = PaddleOCR(det_model_dir="路径/inference/det_db/",
                    rec_model_dir="路径/rec/ch/ch_PP-OCRv4_rec_infer/",
                    cls_model_dir="路径/cls/ch_ppocr_mobile_v2.0_cls_infer/",
                    lang='ch', use_angle_cls=True,
                    use_gpu=False)
    result = ocr.ocr(img)
    print(result)


if __name__ == '__main__':
    img_path = "路径/ys.jpeg"
    ocr_predict(img_path)

同样成功获取到文本坐标,再根据坐标信息使用ch_PP-OCRv4_rec_infer模型进行识别,具体结果与上文一样,不在此复诉。

2.文本识别模型训练

根据官方文本识别教程中最简单直接的思路进行训练,至于其他训练方法可以深入参考官方教程。

1)下载预训练模型

准备好数据集后,可以下载模型预训练文件:

中英文超轻量ch_PP-OCRv3_rec_train模型下载

还可以选择以下模型:

# 下载中英文超轻量PP-OCRv4模型
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/PP-OCRv4/chinese/ch_PP-OCRv4_rec_train.tar
# 或,下载中英文超轻量PP-OCRv3模型
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_train.tar
# 或,下载英文超轻量PP-OCRv3模型
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_train.tar

下载之后将训练模型放在pretrain_models文件夹下并解压。

ch_PP-OCRv4_rec_train模型训练涉及到模型蒸馏,所以退而求其次使用ch_PP-OCRv3_rec_train模型。

2)修改参数配置文件

修改/PaddleOCR/configs/rec/PP-OCRv3/目录下的cn_PP-OCRv3_rec.yml,或者复制一份重命名。

有关配置文件各项参数的详细解释,请参考官方文档

部分常见配置的修改,建议根据各自训练环境自定义配置文件

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

python tools/train.py -c configs/llw/ch_PP-OCRv3_rec.yml -o Global.pretrained_model=./pretrain_models/ch_PP-OCRv3_rec_train/best_accuracy

如果提示RuntimeError: CUDA out of memory.就需要降低batch,或者清理GPU缓存,总会有奇奇怪怪的进程占着资源不放。

3)可视化训练过程

训练过程中,PaddleOCR文件夹下再开一个终端,输入以下命令+模型输出地址可视化训练过程:

visualdl --logdir "./output/rec_ppocr_v3"

在这里插入图片描述

打开http://localhost:8040/,点击标量数据,即可看见实时信息

在这里插入图片描述

4)模型评估测试

评估模型,输入以下命令:

python tools/eval.py -c configs/rec/ch_PP-OCRv3_rec.yml -o Global.checkpoints=./output/rec_ppocr_v3/latest

在这里插入图片描述

对训练好的模型导出导出到/inference/rec_v3文件夹下,输入以下命令

python tools/export_model.py -c configs/rec/ch_PP-OCRv3_rec.yml -o Global.pretrained_model=./output/rec_ppocr_v3/best_accuracy  Global.save_inference_dir=./inference/rec_v3

最后使用以下代码,把自己训练的模型更新到rec_model_dir,进行测试:

import os
import time

from paddleocr import PaddleOCR
import pandas as pd
import numpy as np
import cv2


def ocr_predict(img):
    '''
    det_model_dir:文本检测
    rec_model_dir:文本识别
    cls_model_dir:方向分类
    '''
    ocr = PaddleOCR(det_model_dir="路径/inference/det_db/",
                    rec_model_dir="路径inference/rec_v3/",
                    cls_model_dir="路径/cls/ch_ppocr_mobile_v2.0_cls_infer/",
                    lang='ch', use_angle_cls=True,
                    use_gpu=False)
    result = ocr.ocr(img)
    print(result)


if __name__ == '__main__':
    img_path = "路径/ys.jpeg"
    ocr_predict(img_path)

五、补充

更多官方模型链接

yml部分参数说明
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1298613.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

区块链实验室(29) - 关闭或删除FISCO日志

1. FISCO日志 缺省情况下,FISCO启动日志模块,日志记录的位置在节点目录中。以FISCO自带案例为例,4节点的FISCO网络,24个区块产生的日志大小,见下图所示。 2.关闭日志模块 当节点数量增大,区块高度增大时&…

利用Wix打包安装包

利用Wix打包安装包 背景具体步骤1、安装 WiX Toolset 工具集2、安装 WiX Toolset 系列 Visual Studio 插件3、创建Wix工程4、添加工程文件5、修改Product元素6、修改Package元素7、修改MajorUpgrade元素8、修改Media属性9、设置安装引导界面10、添加WPF项目文件11、添加桌面快捷…

资源三号卫星数字表面模型库

资源三号卫星数字表面模型库(简称ChinaDSM-China Digital Surface Model)是以资源三号卫星立体影像为数据源,采用自主知识产权的基于多基线、多匹配特征的地形信息自动提取技术,快速处理和生产提取的高精度、高保真15米格网数字表…

排序算法之四:直接选择排序

1.基本思想 每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完 。 2.直接选择排序 在元素集合array[i]--array[n-1]中选择关键码最大(小)的数据元素 若它不是这组元素中的…

第 119 场 LeetCode 双周赛题解

A 找到两个数组中的公共元素 模拟 class Solution { public:vector<int> findIntersectionValues(vector<int> &nums1, vector<int> &nums2) {unordered_set<int> s1(nums1.begin(), nums1.end()), s2(nums2.begin(), nums2.end());vector<…

keepalived+lvs 对nginx做负载均衡和高可用

LVS_Director KeepAlivedKeepAlived在该项目中的功能&#xff1a; 1. 管理IPVS的路由表&#xff08;包括对RealServer做健康检查&#xff09; 2. 实现调度器的HA http://www.keepalived.orgKeepalived所执行的外部脚本命令建议使用绝对路径实施步骤&#xff1a; 1. 主/备调度器…

《深入浅出进阶篇》洛谷P3197 越狱——集合

洛谷P3197 越狱 题目大意&#xff1a; 监狱有 n 个房间&#xff0c;每个房间关押一个犯人&#xff0c;有 m 种宗教&#xff0c;每个犯人会信仰其中一种。如果相邻房间的犯人的宗教相同&#xff0c;就可能发生越狱&#xff0c;求有多少种状态可能发生越狱。 答案对100,003 取模。…

Python 网络爬虫(三):XPath 基础知识

《Python入门核心技术》专栏总目录・点这里 文章目录 1. XPath简介2. XPath语法2.1 选择节点2.2 路径分隔符2.3 谓语2.4 节点关系2.5 运算符3. 节点3.1 元素节点(Element Node)3.2 属性节点(Attribute Node)

MongoDB——基本概念+docker部署+基本命令

1.MongoDB相关概念 业务应用场景 MongoDB简介 BSON二进制的JSON 数据类型 MongDB的特点 2.单机部署 windows上的安装启动 windows版本的直接去官网下载即可&#xff0c;这里的安装运行我试了一次没有成功。干脆不用了&#xff0c;反正以后也不会在windows系统上用的这个 li…

NSSCTF第15页(1)

[CISCN 2019华东南]Web4 点击read something&#xff0c;发现访问了百度 读到了源码 就是ssrfflask import re, random, uuid, urllib from flask import Flask, session, requestapp Flask(__name__) random.seed(uuid.getnode()) app.config[SECRET_KEY] str(random.rando…

JSON字符串转泛型对象

JSON字符串转泛型对象 以下问题只仅限于博主自身遇到&#xff0c;不代表绝对出现问题 相关类展示&#xff1a; 参数基类 public class BaseParams { }基类 public abstract class AbstractPush<Params extends BaseParams> {protected abstract void execute(Params…

Shell数组函数:数组——数组和循环(四)

使用数组统计&#xff0c;用户shell的类型和数量 一、脚本编辑 [root192 ~]# vim shell.sh #!/bin/bash declare -A shells while read ii dotypeecho $ii | awk -F: {print $7}let shells[$type] done < /etc/passwdfor i in ${!shells[]} doecho "$i: ${shells[$i]…

开源电子合同签署平台小程序源码/电子文件签字+在线合同签署系统源码/电子合同小程序源码

源码简介&#xff1a; 开源电子合同签署平台小程序源码&#xff0c;它是电子文件签字在线合同签署系统源码/电子合同小程序源码 目前商业端和开源端一致&#xff0c;免费开源状态&#xff01; 聚合市场上各类电子合同解决方案商&#xff0c;你无需一个一个的对接电子合同厂商…

<JavaEE> 经典设计模式之 -- 线程池

目录 一、线程池的概念 二、Java 标准库中的线程池类 2.1 ThreadPoolExecutor 类 2.1.1 corePoolSize 和 maximumPoolSize 2.1.2 keepAliveTime 和 unit 2.1.3 workQueue 2.1.4 threadFactory 2.1.5 handler 2.1.6 创建一个参数自定义的线程池 2.2 Executors 类 2.3…

前端开发_移动Web+动画

平面转换 作用&#xff1a;为元素添加动态效果&#xff0c;一般与过渡配合使用 概念&#xff1a;改变盒子在平面内的形态&#xff08;位移、旋转、缩放、倾斜&#xff09; 平面转换又叫 2D 转换 平移 属性&#xff1a;transform: translate(X轴移动距离&#xff0c;Y轴移动…

vue2 cron表达式组件

vue2 cron表达式组件 1. 先上图 2. 代码目录 3. 直接上代码 &#xff08;组件代码太多&#xff0c;直接上压缩包&#xff0c;解压后直接用&#xff0c;压缩包再博客顶部&#xff09; 4. 使用注&#xff1a;示例代码中使用了element-ui // HomeView.vue<template><…

Python如何实现性能自动化测试

一、思考 1.什么是性能自动化测试? 性能 系统负载能力超负荷运行下的稳定性系统瓶颈 自动化测试 使用程序代替手工提升测试效率 性能自动化 使用代码模拟大批量用户让用户并发请求多页面多用户并发请求采集参数&#xff0c;统计系统负载能力生成报告 2.Python中的性能…

多任务学习(Multi-Task Learning)和迁移学习(Transfer Learning)的详细解释以及区别(系列1)

文章目录 前言一、多任务学习&#xff08;Multi-Task Learning&#xff09;是什么&#xff1f;二、多任务学习&#xff08;Multi-Task Learning&#xff09;对数据的要求三、迁移学习是什么&#xff1f;四&#xff0c;迁移学习对数据的要求五&#xff0c;多任务学习与迁移学习的…

LeetCode Hot100 22.括号生成

题目&#xff1a; 数字 n 代表生成括号的对数&#xff0c;请你设计一个函数&#xff0c;用于能够生成所有可能的并且 有效的 括号组合。 方法&#xff1a;灵神 组合型回溯-剪枝-枚举填左括号还是右括号 代码&#xff1a; class Solution {private int n;private char[] pat…

放弃原生SQL:Python中更优雅的数据库操作

概要 在Python中&#xff0c;通过原生SQL语句进行数据库操作是一种传统的方式&#xff0c;但现代的Python开发中&#xff0c;使用ORM&#xff08;Object-Relational Mapping&#xff09;工具和数据库连接库可以更加高效和优雅地进行增删改查操作。本文将详细介绍Python中放弃原…