A 找到两个数组中的公共元素
模拟
class Solution {
public:
vector<int> findIntersectionValues(vector<int> &nums1, vector<int> &nums2) {
unordered_set<int> s1(nums1.begin(), nums1.end()), s2(nums2.begin(), nums2.end());
vector<int> res(2);
for (auto x: nums1)
if (s2.count(x))
res[0]++;
for (auto x: nums2)
if (s1.count(x))
res[1]++;
return res;
}
};
B 消除相邻近似相等字符
动态规划:设 p [ i ] [ j ] p[i][j] p[i][j] 为将 w o r d [ 0 , i ] word[0,i] word[0,i] 修改为末位为 j j j 的不含相邻近似相等字符串的最少操作数,枚举可能的 w o r d [ i − 1 ] word[i-1] word[i−1] 进行状态转移
class Solution {
public:
int removeAlmostEqualCharacters(string word) {
int n = word.size();
int p[n][26];
for (int j = 0; j < 26; j++)
p[0][j] = 1;
p[0][word[0] - 'a'] = 0;
for (int i = 1; i < n; i++)
for (int j = 0; j < 26; j++) {
p[i][j] = INT32_MAX;
for (int pre = 0; pre < 26; pre++)
if (abs(j - pre) > 1)
p[i][j] = min(p[i][j], p[i - 1][pre] + (word[i] - 'a' == j ? 0 : 1));
}
int res = INT32_MAX;
for (int j = 0; j < 26; j++)
res = min(res, p[n - 1][j]);
return res;
}
};
C 最多 K 个重复元素的最长子数组
滑动窗口+哈希:哈希表记录滑动窗口内数的频率,枚举滑动窗口的左边界,尽可能移动滑动窗口的右边界
class Solution {
public:
int maxSubarrayLength(vector<int> &nums, int k) {
int n = nums.size();
int res = 0;
unordered_map<int, int> f;
for (int l = 0, r = -1; l < n; f[nums[l++]]--) {
while (r + 1 < n && f[nums[r + 1]] + 1 <= k)//滑窗左边界固定时,尽可能移动右边界
f[nums[++r]]++;
res = max(res, r - l + 1);
}
return res;
}
};
D 关闭分部的可行集合数目
枚举:枚举可能的关闭分部集合,然后在当前关闭情况下跑多源最短路算法,然后判断最大的最短路是否不超过 m a x D i s t a n c e maxDistance maxDistance
class Solution {
public:
inline int get_bit(int mask, int loc) { return mask >> loc & 1; }//返回mask二进制表示的第loc位
int pop_cnt(int mask) {//返回mask二进制表示中1的个数
int res = 0;
for (; mask; mask >>= 1)
if (mask & 1)
res++;
return res;
}
int numberOfSets(int n, int maxDistance, vector<vector<int>> &roads) {
int inf = INT32_MAX;
vector<vector<int>> g(n, vector<int>(n, inf));
for (auto &e: roads) {
g[e[0]][e[1]] = min(g[e[0]][e[1]], e[2]);
g[e[1]][e[0]] = g[e[0]][e[1]];
}
int res = 0;
for (int mask = 0; mask < (1 << n); mask++) {//枚举关闭分部集合:mask二进制中第i位为0表示第i个分部关闭
auto t = g;
for (int k = 0; k < n; k++)
if (get_bit(mask, k))
for (int i = 0; i < n; i++)
if (get_bit(mask, i))
for (int j = 0; j < n; j++)
if (get_bit(mask, j))
if (t[i][k] != inf && t[k][j] != inf)
t[i][j] = min(t[i][j], t[i][k] + t[k][j]);
int mx = 0;//最大的最短路
for (int i = 0; i < n; i++)
if (get_bit(mask, i))
for (int j = 0; j < n; j++)
if (j != i && get_bit(mask, j))
mx = max(mx, t[i][j]);
if (mx <= maxDistance)
res++;
}
return res;
}
};