ChatGPT能帮助--掌握各种AI绘图工具,随意生成各类型性图像

news2024/11/30 20:47:41

2023年随着OpenAI开发者大会的召开,最重磅更新当属GPTs,多模态API,未来自定义专属的GPT。微软创始人比尔盖茨称ChatGPT的出现有着重大历史意义,不亚于互联网和个人电脑的问世。360创始人周鸿祎认为未来各行各业如果不能搭上这班车,就有可能被淘汰在这个数字化时代,如何能高效地处理文本、文献查阅、PPT编辑、编程、绘图和论文写作已经成为您成功的关键。而 ChatGPT,作为一种强大的自然语言处理模型,具备显著优势,能够帮助您在各个领域取得突破。

点击查看原文icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=Mzg2NDYxNjMyNA==&mid=2247552026&idx=1&sn=2b16cd5bc37c063d7bce46b1df161e25&chksm=ce64e6f1f9136fe7187b463e83e1bc28d7569af9edf07a5b1eacfe4bef8f6557bda7544bc1cf&token=694962001&lang=zh_CN#rd

ChatGPT 在论文写作与编程方面也具备强大的能力。无论是进行代码生成、错误调试还是解决编程难题,ChatGPT都能为您提供实用且高质量的建议和指导,提高编程效率和准确性。此外,ChatGPT是一位出色的合作伙伴,可以为您提供论文写作的支持。它可以为您提供论文结构指导、段落重组建议,甚至是对论文内容的进一步拓展和丰富。利用ChatGPT的写作能力,您可以更好地组织思路、提升论文的逻辑性和质量。

ChatGPT/GPT4应用初学者最大的障碍是账号问题,本次会议首先解决的就是账号问题【详情见会议福利】,本课程通过多期的讲解,深入总结参会人员的需求,覆盖了科研工作中的文本、论文、编程、绘图等高级应用,融合众多插件应用,提高工作效率及科研项目开发能力,使GPT真正成为科研工作助手。

目标:

1、熟练掌握ChatGPT提示词技巧及各种应用方法,并成为工作中的助手。

2、通过案例掌握ChatGPT撰写、修改论文及工作报告,提供写作能力及优化工作。

3、熟练掌握ChatGPT融合相关插件的应用,完成数据分析、编程以及深度学习等相关科研项目。

4、掌握各种AI绘图工具,随意生成各类型性图像。

5、总结会议参加人员关注问题,现场进行辅助指导及交流。

专题一、OpenAI开发者大会最新技术发展及最新功能应用

1.1最新大模型GPT-4 Turbo详细讲解

1.2最新发布的高级数据分析,AI画图,图像识别,文档API

1.3 GPT Store讲解

1.4(实操演练)从0到1创建自己的GPT应用

专题二、定制自己的GPTs2.1热门的自定义GPTs使用介绍

2.2通过聊天交流的方式制作自己的GPTs

2.3通过自定义的方式制作自己的GPTs

2.4 GPTs的3种分发方式

2.5 GPTs的action功能介绍

专题三、AIGC基础学习

3.1深度学习常用架构介绍

3.2 GPT1-4模型介绍

3.3 AIGC技术发展

3.4大语言模型的评估标准

3.5 ChatGPT/GPT4官网使用方法

3.6优秀国内大模型推荐

3.7 LLM与搜索引擎:差异与联系

专题四、提示词工程高级技巧

4.1提示词工程介绍

4.2如何写好一篇论文的提示词

4.3(实操演练)初识LLM:角色扮演的艺术

4.4(实操演练)调整LLM的语调与表达方式

4.5(实操演练)定义LLM的具体任务与目标

4.6(实操演练)探索LLM与上下文的密切关系

4.7(实操演练)零样本学习:强化逻辑推理

4.8(实操演练)多样本学习:模型模仿能力提升

4.9(实操演练)自洽性检验:数学能力加强

4.10(实操演练)知识生成:提高模型的信息处理能力

专题五、ChatGPT/GPT4的实用案例

5.1(实操演练)ChatGPT/GPT4是最好用的翻译软件

5.2(实操演练)AI助力高效表格数据创建

5.3(实操演练)AI在数据处理中的实际操作

5.4(实操演练)苏格拉底式教学法在AI中的运用

5.5(实操演练)如何与AI交流科研问题

5.6(实操演练)AI助力文本数据整理与分析

5.7(实操演练)AI在用户评论分析中的应用

5.8(实操演练)AI撰写专业报告的技巧

5.9(实操演练)让AI根据知识点出题

5.10(实操演练)使用AI工具快速产出高端PPT的4种方法

5.11(实操演练)使用AI工具快速产出短视频

5.12(实操演练)快速制作流程图和思维导图

添加图片注释,不超过 140 字(可选)

添加图片注释,不超过 140 字(可选)

专题六、让ChatGPT/GPT4成为你的论文助手

6.1(实操演练)分析论文得出审稿意见

6.2(实操演练)进行论文内容问答

6.3(实操演练)生成论文摘要

6.4(实操演练)写论文综述并标注内容来源

6.5(实操演练)中/英文论文润色的4种方法

6.6(实操演练)进行论文降重的技巧

6.7(实操演练)查找某个观点或内容相关的论文

6.8(实操演练)对多篇论文进行分析对比

6.9(实操演练)如何防止AI生成的内容被检测

6.10(实操演练)生成完整长篇论文的技巧

添加图片注释,不超过 140 字(可选)

专题七、python基础学习

7.1 python的应用场景

7.2(实操演练)python环境安装配置

7.3(实操演练)print使用

7.4(实操演练)运算符和变量

7.5(实操演练)循环

7.6(实操演练)列表元组字典

7.7(实操演练)if条件

7.8(实操演练)函数

7.9(实操演练)模块

7.10(实操演练)类的使用

7.11(实操演练)文件读写

7.12(实操演练)异常处理

专题八、科学计算模块Numpy和绘图模块Matplotlib学习

8.1(实操演练)numpy的属性

8.2(实操演练)创建array

8.3(实操演练)numpy的运算

8.4(实操演练)随机数生成以及矩阵的运算

8.5(实操演练)numpy的索引

8.6(实操演练)array合并

8.7(实操演练)Matplotlib基础用法

8.8(实操演练)figure图像

8.9(实操演练)设置坐标轴

8.10(实操演练)legend图例

8.11(实操演练)scatter散点图

专题九、机器学习算法应用

9.1机器学习概述

9.2训练集/验证集/测试集

9.3监督学习与无监督学习

9.4分类/回归/聚类算法

9.5机器学习算法应用分析

9.6(实操演练)使用回归算法完成波士顿房价预测

9.7(实操演练)使用KNN算法完成鸢尾花分类

9.8(实操演练)使用逻辑回归算法完成糖尿病预测

9.9(实操演练)分析特征重要性(哪些特征对标签的影响最大)

9.10(实操演练)机器学习特征工程完整流程

专题十、深度学习算法基础

10.1单层感知器

10.2激活函数,损失函数和梯度下降法

10.3 BP算法介绍

10.4梯度消失问题

10.5多种激活函数介绍

10.6(实操演练)BP算法解决手写数字识别问题

专题十一、深度学习框架Tensorflow应用

11.1(实操演练)Mnist数据集和softmax讲解

11.2(实操演练)使用BP神经网络识别图片

11.3(实操演练)交叉熵(cross-entropy)讲解和使用

11.4(实操演练)欠拟合/正确拟合/过拟合

11.5(实操演练)各种优化器Optimizer

11.6(实操演练)模型保存和模型载入方法

专题十二、深度学习算法-卷积神经网络CNN应用

12.1 CNN卷积神经网络

12.2卷积的局部感受野,权值共享介绍。

12.3卷积的具体计算方式

12.4池化层介绍(均值池化、最大池化)

12.5 same padding和valid padding介绍

12.6 LeNET-5卷积网络介绍

12.7(实操演练)CNN手写数字识别案例

专题十三、深度学习算法-长短时记忆网络LSTM应用

13.1 RNN循环神经网络介绍

13.2 RNN具体计算分析

13.3长短时记忆网络LSTM介绍

13.4输入门,遗忘门,输出门具体计算分析

13.5堆叠LSTM介绍

13.6双向LSTM介绍

13.7(实操演练)使用LSTM进行设备故障预测

专题十四、基于深度学习模型的图像识别

14.1 VGG16模型详解

14.2 ResNet模型详解

14.3 EfficientNet模型详解

14.4(实操演练)下载训练好的1000分类图像识别模型

14.5(实操演练)使用训练好的图像识别模型进行各种图像分类

14.6(实操演练)使用迁移学习训练自己的天气现象分类模型

专题十五、让ChatGPT/GPT4成为你的编程助手

15.1使用ChatGPT/GPT4写程序的注意事项

15.2(实操演练)让AI对代码进行详细讲解

15.3(实操演练)进行代码纠错及自动修改

15.4(实操演练)使用AI工具读取本地数据的技巧

15.5(实操演练)绘制折线图,柱状图,饼图等各种统计分析图表

15.6(实操演练)让AI工具帮你自动进行数据分析和特征工程

15.7(实操演练)使用你的数据产生机器学习模型进行分类预测

15.8(实操演练)根据你的数据产生深度学习模型进行回归预测

15.9(实操演练)自动化AI编程助手的使用

专题十六、让ChatGPT/GPT4进行数据处理

16.1(实操演练)让AI正确读取表格数据

16.2(实操演练)让AI理解百万行数据

16.3(实操演练)使用AI进行数据可视化

16.4(实操演练)使用AI进行数据缺失值处理

16.5(实操演练)使用AI进行数据归一化

16.6(实操演练)使用AI进行特征筛选

16.7(实操演练)使用AI输出表格数据

16.8(实操演练)使用AI输出特征工程处理后的数据

16.9(实操演练)使用AI绘制统计分析图表

专题十七、ChatGPT/GPT4在地球科学方面的应用

17.1(实操演练)用GPT绘制世界地图海岸线

17.2(实操演练)用GPT绘制不同的地图投影

17.3(实操演练)用GPT绘制南极地投影

17.4(实操演练)用GPT绘制地球各种关键变量的图

17.5(实操演练)用GPT绘制台风总降水量图

17.6(实操演练)用GPT绘制台风风速图

17.7(实操演练)用GPT计算台风总降水量

17.8(课实操演练)用GPT对遥感图像光谱数据进行机器学习建模分类

专题十八、ChatGPT/GPT4高级开发应用

18.1(实操演练)GPT模型API接口程序使用

18.2(实操演练)GPT模型参数调节

18.3(实操演练)用GPT程序API接口制作聊天机器人

18.4(实操演练)用GPT程序API接口制作自动订餐机器人

18.5(实操演练)用GPT程序API批量处理大量文本数据

18.6(实操演练)用DALLE-3程序API接口生成图片

18.7(实操演练)GPT4本地文件上传功能使用

18.8(实操演练)GPT4联网功能使用

18.9(实操演练)GPT4图像识别功能应用

18.10(实操演练)GPT高级数据分析功能详解

专题十九、AI绘图工具Midjourney和DALLE3应用

19.1 AI画图原理介绍

19.2(实操演练)Midjourney工具的基础操作

19.3(实操演练)remix模式介绍

19.4(实操演练)blend命令介绍

19.5(实操演练)describe命令介绍

19.6(实操演练)图生图通过图片生成新的图片

19.7(实操演练)Midjourney的参数和设置介绍

19.8(实操演练)Midjourney科研作图介绍

19.9(实操演练)DALL-E 3模型介绍

19.10(实操演练)DALL-E 3根据上下文内容修改图片

19.11(实操演练)DALL-E 3在图像中生成特定文字

19.12(实操演练)DALL-E 3绘图结果的不断优化

专题二十、AI绘图工具Stable Diffusion基础应用

20.1(实操演练)Stable Diffusion工具介绍

20.2(实操演练)Stable Diffusion环境部署介绍

20.3(实操演练)通过文字生成图片

20.4(实操演练)通过图片生成图片

20.5(实操演练)图像智能高清算法

20.6(实操演练)使用Lora模型产生写实人物图像

20.7(实操演练)进行图像的局部重绘

20.8(实操演练)Controlnet插件介绍

20.9(实操演练)使用线稿图生成装修和建筑

20.10(实操演练)使用线稿图给图片上色

20.11(实操演练)产生特定姿态的人物图像

关注科研技术平台获取更多详情​

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1290526.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

专业130+总分400+云南大学通信847专业基础综考研经验(原专业课827)

今年专业130总分400云南大学通信上岸,整体考研感觉还是比较满意,期间也付出了很多心血,走过弯路,下面分享一下这一年考研得失,希望大家可以从中有所借鉴。 先说明我在考研报名前更换成云南大学的理由:&…

HarmonyOS4.0从零开始的开发教程03初识ArkTS开发语言(中)

HarmonyOS(二)初识ArkTS开发语言(中)之TypeScript入门 浅析ArkTS的起源和演进 1 引言 Mozilla创造了JS,Microsoft创建了TS,Huawei进一步推出了ArkTS。 从最初的基础的逻辑交互能力,到具备类…

使用NimoShake将数据从AWS DynamoDB迁移至阿里云MongoDB

本文介绍从AWS DynamoDB到阿里云MongoDB的迁移框架。 它概述了以下步骤: 在阿里云上配置云数据库MongoDB版并应用公网终端节点在 AWS EC2 上安装 Nimoshake将AWS EC2访问阿里云MongoDB版列入白名单配置 Nimoshake 并开始迁移过程验证目标数据库上的增量数据 1. 创…

阿里云上传文件出现的问题解决(跨域设置)

跨域设置引起的问题 起因&#xff1a;开通对象存储服务后&#xff0c;上传文件限制在5M 大小&#xff0c;无法上传大文件。 1.查看报错信息 2.分析阿里云服务端响应内容 <?xml version"1.0" encoding"UTF-8"?> <Error><Code>Invali…

计算机图形图像技术(图像锐化处理与图像解析)

一、实验原理&#xff1a; 1、拓展Sobel算子锐化 void Sobel(Array src, Array dst, int ddepth, int dx, int dy, int ksize); ①参数&#xff1a;src为输入图像&#xff1b;dst为输出图像&#xff0c;大小和通道数与源图像一致&#xff0c;必要时重建&#xff1b;ddepth为目…

【动手学深度学习】(十一)卷积层

文章目录 一、从全连接到卷积 一、从全连接到卷积 分类猫和狗的图片 使用一个相机采集图片&#xff08;12M像素&#xff09;RGB图片有36M元素使用100大小的单隐层MLP&#xff0c;模型有3.6B元素 远多于世界上所有猫和狗总数&#xff08;900M狗&#xff0c;600M猫&#xff09;…

KD-Tree

游戏中常对物体进行空间划分&#xff0c;对于均匀分布的划分一般用四叉树(八叉树)&#xff0c;动态不均匀的分布可以采用kd-tree 构建kd-tree 构建思路&#xff1a; 1.对节点进行各维度的方差分析&#xff0c;选取方差最大(即离散程度最高)的维度进行排序。取中值节点作为分…

ThreadX开源助力Microsoft扩大应用范围:对比亚马逊AWS的策略差异

全球超过120亿台设备正在运行ThreadX&#xff0c;这是一款专为资源受限环境设计的实时操作系统。该操作系统在微控制器和小型处理器上表现出色&#xff0c;以极高的可靠性和精确的时间控制处理任务而闻名。 ThreadX曾是英特尔芯片管理引擎的引擎&#xff0c;并且是控制Raspber…

运行第一个php及html程序

运行第一个php程序 打开vscode&#xff0c;打开文件夹&#xff0c;找到wampserver的安装目录中的www文件夹新建文件。 html文件直接复制路径到浏览器即可运行 php文件复制路径到浏览器后更改www及之前的路径为localhost

Linux系统调试课:I2C tools调试工具

文章目录 一、如何使用I2C tools测试I2C外设1、I2C tools概述: 2、下载I2C tools源码:3、编译I2C tools源码: 4、i2cdetect 5、i2cget 6、i2cdump

STM32单片机项目实例:基于TouchGFX的智能手表设计(3)嵌入式程序任务调度的设计

STM32单片机项目实例&#xff1a;基于TouchGFX的智能手表设计&#xff08;3&#xff09;嵌入式程序任务调度的设计 目录 一、嵌入式程序设计 1.1轮询 1.2 前后台&#xff08;中断轮询&#xff09; 1.3 事件驱动与消息 1.3.1 事件驱动的概念 1.4 定时器触发事件驱动型的任…

7. 从零用Rust编写正反向代理, HTTP及TCP内网穿透原理及运行篇

wmproxy wmproxy是由Rust编写&#xff0c;已实现http/https代理&#xff0c;socks5代理&#xff0c; 反向代理&#xff0c;静态文件服务器&#xff0c;内网穿透&#xff0c;配置热更新等&#xff0c; 后续将实现websocket代理等&#xff0c;同时会将实现过程分享出来&#xff…

分布式光伏电站监控运维系统的简单介绍-安科瑞黄安南

摘要&#xff1a;设计了一套更高性价比&#xff0c;且容易操作的电站监控系统。该系统融合了互联网和物联网&#xff0c;并为光伏电数据的传输构建了相应的通道&#xff0c;可支持云存储等功能&#xff0c;同时也为用户提供了多元化的查询功能。 关键词&#xff1a;分布式太阳能…

P6 Linux 系统中的文件类型

目录 前言 ​编辑 01 linux系统查看文件类型 02 普通文件 - 03 目录文件 d 04 字符设备文件 c 和块设备文件 b 05 符号链接文件 l 06 管道文件 p 07 套接字文件 s 总结 前言 &#x1f3ac; 个人…

Azure Machine Learning - Azure OpenAI 服务使用 GPT-35-Turbo and GPT-4

通过 Azure OpenAI 服务使用 GPT-35-Turbo and GPT-4 环境准备 Azure 订阅 - 免费创建订阅已在所需的 Azure 订阅中授予对 Azure OpenAI 服务的访问权限。 目前&#xff0c;仅应用程序授予对此服务的访问权限。 可以填写 https://aka.ms/oai/access 处的表单来申请对 Azure Op…

基于PicGo实现Typora图片自动上传GitHub

文章目录 一. 引言二. 原理三. 配置3.1 GitHub 设置3.2 下载配置 PicGo3.3 配置 Typora3.4 使用 一. 引言 Typora是一款非常好的笔记软件&#xff0c;但是有一个比较不好的地方&#xff1a;默认图片是存放在本地缓存中。这就会导致文件夹一旦被误删或电脑系统重装而忘记备份文件…

vr建筑虚拟实景展厅漫游体验更直观全面

随着科技的不断进步&#xff0c;纯三维、可交互、轻量化的三维线上展览云平台&#xff0c;打破时间界限&#xff0c;以其独特的魅力&#xff0c;给予客户更多的自主性、趣味性和真实性&#xff0c;客户哪怕在天南地北&#xff0c;通过网络、手机即可随时随地参观企业线上立体化…

多元线性回归(一)

基本概念 线性回归时机器学习中监督学习下的一种算法。回归问题主要关注是因变量&#xff08;需要预测的值&#xff0c;可以是一个也可以是多个&#xff09;和一个或多个值型的自变量&#xff08;预测变量&#xff09;之间的关系。 需要预测的值&#xff1a;即目标变量&#x…

聚观早报 |东方甄选将上架文旅产品;IBM首台模块化量子计算机

【聚观365】12月6日消息 东方甄选将上架文旅产品 IBM首台模块化量子计算机 新思科技携手三星上新兴领域 英伟达与软银推动人工智能研发 苹果对Vision Pro供应商做出调整 东方甄选将上架文旅产品 东方甄选宣布12月10日将在东方甄选APP上线文旅产品&#xff0c;受这一消息影…

idea+spring框架+thymeleaf实现数据库增加数据(不使用xml文件)

增加数据主要涉及四个文件 Apple.java写清楚数据库内部字段 package com.example.appledemo.pojo;import lombok.Getter;Getter public class Apple {private Integer appleId;private Integer price;private Integer weight;public void setAppleId(Integer appleId) {this.a…