Python Opencv实践 - Yolov3目标检测

news2024/11/17 2:31:29

        本文使用CPU来做运算,未使用GPU。练习项目,参考了网上部分资料。

        如果要用TensorFlow做检测,可以参考这里

使用GPU运行基于pytorch的yolov3代码的准备工作_little han的博客-CSDN博客文章浏览阅读943次。记录一下自己刚拿到带独显的电脑,如何成功使用上GPU跑程序的过程。List item环境:win10平台:pycharm代码是基于pytorch的yolo目标检测程序,是B站的一个up分享的,链接如下:https://www.bilibili.com/video/BV14f4y1q7ms1 下载安装cuda以及CUDNN教程参考:深度学习环境搭建(GPU)CUDA安装(完全版)注意:教程中cuda的安装地址选择系统默认值,否则容易出错,即系统找不到路径。在配置路径时,可以先检查自己的cudahttps://blog.csdn.net/weixin_42217041/article/details/118107802

        以下是代码,仅供参考:

import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt

#读取支持的类名文件coco.names
classNamesFile = './coco.names'
classNames = []
with open(classNamesFile,'rt') as f:
    classNames = f.read().rstrip('\n').split('\n')
classNum = len(classNames)
print('Total ' + str(classNum) + ' classes: ')
print(classNames)

#置信度阈值
confidenceThreshold = 0.5
#非极大值抑制参数
NMSThreshold = 0.3
#Blob参数
targetWidth = 608
#yolov3的模型配置和权重
modelConfigFile = './yolov3.cfg'
modelWeightsFile = './yolov3.weights'
#读取dnn网络
net = cv.dnn.readNetFromDarknet(modelConfigFile, modelWeightsFile)
#设置网络偏好使用的后端和目标,这里使用CPU
net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV)
net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU)
#获取网络的层名
layerNames = net.getLayerNames()
#print("All layer names:")
#print(layerNames)
#获得未连接的输出层
#https://blog.csdn.net/weixin_43745234/article/details/124628811
outputLayerNames = [layerNames[i - 1] for i in net.getUnconnectedOutLayers()]
print(outputLayerNames)

#读取视频
video = cv.VideoCapture('../../SampleVideos/Party.mp4')
width = video.get(cv.CAP_PROP_FRAME_WIDTH)
height = video.get(cv.CAP_PROP_FRAME_HEIGHT)
fps = video.get(cv.CAP_PROP_FPS)
fourcc = int(video.get(cv.CAP_PROP_FOURCC))
totalFrames = video.get(cv.CAP_PROP_FRAME_COUNT)
print("Video Properties: resolution - (", width, height, ") FPS - "
      , fps, " FOURCC - "
      , chr(fourcc&0xFF), chr((fourcc>>8)&0xFF), chr((fourcc>>16)&0xFF),chr((fourcc>>24)&0xFF)
      , " Frame Count - ", totalFrames)

def DebugOutputs(outputs):
    print("Length of Outputs:")
    print(len(outputs))
    for i in range(len(outputs)):
        print(outputs[i].shape)
        print(outputs[i][0])

def FindObjects(outputs, img, confidenceThreshold):
    h,w,c = img.shape
    print(h,w,c)
    boxes = []
    classIds = []
    confidences = []

    for output in outputs:
        for detection in output:
            scores = detection[5:]
            classId = np.argmax(scores)
            confidence = scores[classId]
            #设置置信度阈值
            if confidence > confidenceThreshold:
                #yolov3的输出层的shape一般是一个二维数组(nBoxes, 85)
                #nBoxes 表示该层输出的边界框的数量
                #85列信息 表示每个边框相关的信息,比如边框位置(中心X,Y,长度和宽度W,H(百分比)),
                #        第五个值为该边框最有可能的物体分类ID号(confidence,置信度)
                #        剩下的80个位置的值是每一类物体的ID和为该物体的概率信息等
                #print(detection)
                #print(detection[0],detection[1],detection[2],detection[3],detection[4])
                boxWidth = int(detection[2] * w)
                boxHeight = int(detection[3] * h)
                boxX,boxY = int(detection[0] * w - boxWidth / 2),int(detection[1] * h - boxHeight / 2)
                boxes.append([boxX,boxY,boxWidth,boxHeight])
                classIds.append(classId)
                confidences.append(float(confidence))

    #print("Detected classes:")
    #for id in classIds:
        #print(classNames[id])
    #非极大值抑制
    indices = cv.dnn.NMSBoxes(boxes, confidences, confidenceThreshold, NMSThreshold)
    #print(indices)
    for index in indices:
        box = boxes[index]
        x,y,w,h = box[0],box[1],box[2],box[3]
        #print(box)
        #绘制边框和文字信息
        cv.rectangle(img, (x,y), (x+w,y+h), (0,255,0),2)
        text = '{}: {:.3f}'.format(classNames[classIds[index]], confidences[index])
        (text_w, text_h), baseline = cv.getTextSize(text, cv.FONT_HERSHEY_SIMPLEX, 0.5, 2)
        cv.rectangle(img, (x, y - text_h - baseline), (x + text_w, y), (255,0,255), -1)
        cv.putText(img, text, (x, y - 5), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 2)
        
while (True):
    ret,frame = video.read()
    if ret == False:
        break;
    #从Image创建blob
    #参考资料:https://blog.csdn.net/weixin_42216109/article/details/103010206
    blob = cv.dnn.blobFromImage(frame, 1/255, (targetWidth, targetWidth), [0,0,0])
    net.setInput(blob)
    #拿到输出层的结果
    outputs = net.forward(outputLayerNames)
    #DebugOutputs(outputs)
    FindObjects(outputs, frame, confidenceThreshold)
    cv.imshow('VideoPlayer', frame)
    if cv.waitKey(1) & 0xFF == ord('q'):
        break;

video.release()
cv.destroyAllWindows()

运行结果,还不错:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1283915.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

springboot数据源配置

springboot数据源配置 数据层解决方案——持久化技术 内置持久化解决方案——jdbcTemplate 内置数据库 H2一般用于测试环境,配置profiels,只在开发阶段使用,让他在上线的时候不走这里就可以了 要使用内嵌的数据库H2,要先导入jar包

python提取通话记录中的时间信息

您需要安装适合中文的SpaCy模型。您可以通过运行 pip install spacypython -m spacy download zh_core_web_sm来安装和下载所需的模型。 import spacy# 加载中文模型 nlp spacy.load(zh_core_web_sm)# 示例电话记录文本 text """ Agent: 今天我们解决一下这…

语音识别从入门到精通——1-基本原理解释

文章目录 语音识别算法1. 语音识别简介1.1 **语音识别**1.1.1 自动语音识别1.1.2 应用 1.2 语音识别流程1.2.1 预处理1.2.2 语音检测和断句1.2.3 音频场景分析1.2.4 识别引擎(**语音识别的模型**)1. 传统语音识别模型2. 端到端的语音识别模型基于Transformer的ASR模型基于CNN的…

14、pytest像用参数一样使用fixture

官方实例 # content of test_fruit.py import pytestclass Fruit:def __init__(self, name):self.name nameself.cubed Falsedef cube(self):self.cubed Trueclass FruitSalad:def __init__(self, *fruit_bowl):self.fruit fruit_bowlself._cube_fruit()def _cube_fruit(s…

【从零开始学习Redis | 第六篇】爆改Setnx实现分布式锁

前言: 在Java后端业务中, 如果我们开启了均衡负载模式,也就是多台服务器处理前端的请求,就会产生一个问题:多台服务器就会有多个JVM,多个JVM就会导致服务器集群下的并发问题。我们在这里提出的解决思路是把…

Spring Security 自定义异常失效?源码分析与解决方案

🚀 作者主页: 有来技术 🔥 开源项目: youlai-mall 🍃 vue3-element-admin 🍃 youlai-boot 🌺 仓库主页: Gitee 💫 Github 💫 GitCode 💖 欢迎点赞…

python pyaudio对音频进行端点检测,检测出说话区间

python pyaudio对音频进行端点检测,检测出说话区间 主要采用过零率和语音能量来进行检测,并设置双阈值。 代码如下: # -*- coding: utf-8 -*- import wave import os import matplotlib.pyplot as plt import numpy as np# 判断是否变号 de…

差分基准站

差分基准站,又称参考接收机,是一种固定式卫星接收机,用于提高卫星定位精度。 差分基准站的作用是提供已知位置和准确的位置信号,以纠正其他移动定位终端接收器接收到的卫星信号中的误差。 卫星定位信号会受到多种因素的影响&#…

Redis缓存——Spring Cache入门学习

Spring Cache 介绍 Spring Cache 是一个框架,实现了基于注解的缓存功能,只需要简单地加一个注解,就能实现缓存功能。 Spring Cache 提供了一层抽象,底层可以切换不同的缓存实现,例如: EHCacheCaffeineR…

JAVA-作业7-画一个笑脸

要求如题 代码如下: SmileFace01: import java.awt.Color; import java.awt.Graphics;import javax.swing.JPanel;public class SmileFace01 extends JPanel {Overrideprotected void paintComponent(Graphics g) {super.paintComponent(g);int width getWidth(…

【c】有序数列插入一个整数

#include<stdio.h> int main() {int n;scanf("%d",&n);int arr[n1];for(int i0;i<n;i){scanf("%d",&arr[i]);}int a;scanf("%d",&a);arr[n]a;for(int j0;j<n;j){if(arr[j]>arr[n])//交换元素位置{int temparr[j];arr…

【广州华锐互动】风电场检修VR情景模拟提供接近真实的实操体验

风电场检修VR情景模拟系统由广州华锐互动开发&#xff0c;这是一种新兴的培训方式&#xff0c;它通过虚拟现实技术将风力发电场全范围进行1:1仿真建模还原&#xff0c;模拟监视风力发电场各种运行工况下的运行参数和指标&#xff0c;同时可进行升压站系统的巡视&#xff0c;倒闸…

JavaWeb 分页查询

由于html不能直接从域当中直接拿数据 所以我们引入了jsp文件 数据存在了requets域当中 如果数据量很大,不可能把所有数据全部在页面展示: 数据全部在页面展示缺点: SQL执行时间过长 用户查看数据,滚动滚动条,用户体验不高 在实际开发中,分页查询&#xff0c; 实现: sql语句…

什么是Overlay网络?Overlay网络与Underlay网络有什么区别?

你们好&#xff0c;我的网工朋友。 在传统历史阶段&#xff0c;数据中心的网络是以三层架构&#xff08;核心、汇聚、接入&#xff09;为基本标准。 但是随着技术的发展&#xff0c;不同的厂家有不同的组建方式&#xff0c;比如说在核心层、汇聚层和接入层增加虚拟化技术。 …

Linux Namespace技术

对应到容器技术&#xff0c;为了隔离不同类型的资源&#xff0c;Linux 内核里面实现了以下几种不同类型的 namespace。 UTS&#xff0c;对应的宏为 CLONE_NEWUTS&#xff0c;表示不同的 namespace 可以配置不同的 hostname。User&#xff0c;对应的宏为 CLONE_NEWUSER&#xf…

Vmware17虚拟机安装windows10系统

不要去什么系统之家之类的下载镜像&#xff0c;会不好安装&#xff0c;镜像被魔改过了&#xff0c;适合真实物理机上的系统在PE里安装系统&#xff0c;建议下载原版系统ISO文件 安装vmware17pro 下载地址https://dwangshuo.jb51.net/202211/tools/VMwareplayer17_855676.rar 解…

【源码解析】聊聊线程池 实现原理与源码深度解析(二)

AbstractExecutorService 上一篇文章中&#xff0c;主要介绍了AbstractExecutorService的线程执行的核心流程&#xff0c;execute() 这个方法显然是没有返回执行任务的结果&#xff0c;如果我们需要获取任务执行的结果&#xff0c;怎么办&#xff1f; Callable 就是一个可以获…

【yolov8】与yolov5的区别及改进详解

图像识别技术在物联网、智能监控等领域广泛应用。而深度学习中的目标检测技术&#xff0c;能够帮助我们对图像中的目标进行识别&#xff0c;进而实现自动化控制。目前&#xff0c;Yolov8和Yolov5是目标检测领域热门的模型。 yolo目标检测原理yolov5详解yolov8yolov8结构图Conv模…

RK3588+MCU机器人控制器解决方案

1 产品简介 XMP04A 是一款信迈科技基于 RK3588 设计的高性能、低功耗的边缘计算设备&#xff0c; 内置 NPU 算力可达 6.0TOPSINT8&#xff0c;以及具备强大的视频编解码能力&#xff0c;最高可支持 32 路 1080P30fps 解码和 16 路 1080P30fps 编码 &#xff0c;支持 4K12…

数据库管理-第120期 初探Halo数据库(202301201)

数据库管理-第120期 初探Halo数据库&#xff08;202301201&#xff09; 12月份正好也是第120期&#xff0c;新的一篇文章&#xff0c;尝试一条新的路线。其实吧&#xff0c;Halo&#xff08;羲和&#xff09;这个数据库我较早时间就听说过&#xff08;早于今年DTCC&#xff0c…