[足式机器人]Part2 Dr. CAN学习笔记-Ch0-1矩阵的导数运算

news2025/1/10 2:35:37

本文仅供学习使用
本文参考:
B站:DR_CAN

Dr. CAN学习笔记-Ch0-1矩阵的导数运算

  • 1. 标量向量方程对向量求导,分母布局,分子布局
    • 1.1 标量方程对向量的导数
    • 1.2 向量方程对向量的导数
  • 2. 案例分析,线性回归
  • 3. 矩阵求导的链式法则


1. 标量向量方程对向量求导,分母布局,分子布局

1.1 标量方程对向量的导数

  • y y y 为 一元向量 或 二元向量
    在这里插入图片描述
  • y y y为多元向量
    y ⃗ = [ y 1 , y 2 , ⋯   , y n ] ⇒ ∂ f ( y ⃗ ) ∂ y ⃗ \vec{y}=\left[ y_1,y_2,\cdots ,y_{\mathrm{n}} \right] \Rightarrow \frac{\partial f\left( \vec{y} \right)}{\partial \vec{y}} y =[y1,y2,,yn]y f(y )
    其中: f ( y ⃗ ) f\left( \vec{y} \right) f(y ) 为标量 1 × 1 1\times 1 1×1, y ⃗ \vec{y} y 为向量 1 × n 1\times n 1×n
  1. 分母布局 Denominator Layout——行数与分母相同
    ∂ f ( y ⃗ ) ∂ y ⃗ = [ ∂ f ( y ⃗ ) ∂ y 1 ⋮ ∂ f ( y ⃗ ) ∂ y n ] n × 1 \frac{\partial f\left( \vec{y} \right)}{\partial \vec{y}}=\left[ \begin{array}{c} \frac{\partial f\left( \vec{y} \right)}{\partial y_1}\\ \vdots\\ \frac{\partial f\left( \vec{y} \right)}{\partial y_{\mathrm{n}}}\\ \end{array} \right] _{n\times 1} y f(y )= y1f(y )ynf(y ) n×1
  2. 分子布局 Nunerator Layout——行数与分子相同
    ∂ f ( y ⃗ ) ∂ y ⃗ = [ ∂ f ( y ⃗ ) ∂ y 1 ⋯ ∂ f ( y ⃗ ) ∂ y n ] 1 × n \frac{\partial f\left( \vec{y} \right)}{\partial \vec{y}}=\left[ \begin{matrix} \frac{\partial f\left( \vec{y} \right)}{\partial y_1}& \cdots& \frac{\partial f\left( \vec{y} \right)}{\partial y_{\mathrm{n}}}\\ \end{matrix} \right] _{1\times n} y f(y )=[y1f(y )ynf(y )]1×n

1.2 向量方程对向量的导数

f ⃗ ( y ⃗ ) = [ f ⃗ 1 ( y ⃗ ) ⋮ f ⃗ n ( y ⃗ ) ] n × 1 , y ⃗ = [ y 1 ⋮ y m ] m × 1 \vec{f}\left( \vec{y} \right) =\left[ \begin{array}{c} \vec{f}_1\left( \vec{y} \right)\\ \vdots\\ \vec{f}_{\mathrm{n}}\left( \vec{y} \right)\\ \end{array} \right] _{n\times 1},\vec{y}=\left[ \begin{array}{c} y_1\\ \vdots\\ y_{\mathrm{m}}\\ \end{array} \right] _{\mathrm{m}\times 1} f (y )= f 1(y )f n(y ) n×1,y = y1ym m×1
∂ f ⃗ ( y ⃗ ) n × 1 ∂ y ⃗ m × 1 = [ ∂ f ⃗ ( y ⃗ ) ∂ y 1 ⋮ ∂ f ⃗ ( y ⃗ ) ∂ y m ] m × 1 = [ ∂ f 1 ( y ⃗ ) ∂ y 1 ⋯ ∂ f n ( y ⃗ ) ∂ y 1 ⋮ ⋱ ⋮ ∂ f 1 ( y ⃗ ) ∂ y m ⋯ ∂ f n ( y ⃗ ) ∂ y m ] m × n \frac{\partial \vec{f}\left( \vec{y} \right) _{n\times 1}}{\partial \vec{y}_{\mathrm{m}\times 1}}=\left[ \begin{array}{c} \frac{\partial \vec{f}\left( \vec{y} \right)}{\partial y_1}\\ \vdots\\ \frac{\partial \vec{f}\left( \vec{y} \right)}{\partial y_{\mathrm{m}}}\\ \end{array} \right] _{\mathrm{m}\times 1}=\left[ \begin{matrix} \frac{\partial f_1\left( \vec{y} \right)}{\partial y_1}& \cdots& \frac{\partial f_{\mathrm{n}}\left( \vec{y} \right)}{\partial y_1}\\ \vdots& \ddots& \vdots\\ \frac{\partial f_1\left( \vec{y} \right)}{\partial y_{\mathrm{m}}}& \cdots& \frac{\partial f_{\mathrm{n}}\left( \vec{y} \right)}{\partial y_{\mathrm{m}}}\\ \end{matrix} \right] _{\mathrm{m}\times \mathrm{n}} y m×1f (y )n×1= y1f (y )ymf (y ) m×1= y1f1(y )ymf1(y )y1fn(y )ymfn(y ) m×n, 为分母布局

若: y ⃗ = [ y 1 ⋮ y m ] m × 1 , A = [ a 11 ⋯ a 1 n ⋮ ⋱ ⋮ a m 1 ⋯ a m n ] \vec{y}=\left[ \begin{array}{c} y_1\\ \vdots\\ y_{\mathrm{m}}\\ \end{array} \right] _{\mathrm{m}\times 1}, A=\left[ \begin{matrix} a_{11}& \cdots& a_{1\mathrm{n}}\\ \vdots& \ddots& \vdots\\ a_{\mathrm{m}1}& \cdots& a_{\mathrm{mn}}\\ \end{matrix} \right] y = y1ym m×1,A= a11am1a1namn , 则有:

  • ∂ A y ⃗ ∂ y ⃗ = A T \frac{\partial A\vec{y}}{\partial \vec{y}}=A^{\mathrm{T}} y Ay =AT(分母布局)
  • ∂ y ⃗ T A y ⃗ ∂ y ⃗ = A y ⃗ + A T y ⃗ \frac{\partial \vec{y}^{\mathrm{T}}A\vec{y}}{\partial \vec{y}}=A\vec{y}+A^{\mathrm{T}}\vec{y} y y TAy =Ay +ATy , 当 A = A T A=A^{\mathrm{T}} A=AT时, ∂ y ⃗ T A y ⃗ ∂ y ⃗ = 2 A y ⃗ \frac{\partial \vec{y}^{\mathrm{T}}A\vec{y}}{\partial \vec{y}}=2A\vec{y} y y TAy =2Ay

若为分子布局,则有: ∂ A y ⃗ ∂ y ⃗ = A \frac{\partial A\vec{y}}{\partial \vec{y}}=A y Ay =A

2. 案例分析,线性回归

  • ∂ A y ⃗ ∂ y ⃗ = A T \frac{\partial A\vec{y}}{\partial \vec{y}}=A^{\mathrm{T}} y Ay =AT(分母布局)
  • ∂ y ⃗ T A y ⃗ ∂ y ⃗ = A y ⃗ + A T y ⃗ \frac{\partial \vec{y}^{\mathrm{T}}A\vec{y}}{\partial \vec{y}}=A\vec{y}+A^{\mathrm{T}}\vec{y} y y TAy =Ay +ATy , 当 A = A T A=A^{\mathrm{T}} A=AT时, ∂ y ⃗ T A y ⃗ ∂ y ⃗ = 2 A y ⃗ \frac{\partial \vec{y}^{\mathrm{T}}A\vec{y}}{\partial \vec{y}}=2A\vec{y} y y TAy =2Ay

Linear Regression 线性回归
z ^ = y 1 + y 2 x ⇒ J = ∑ i = 1 n [ z i − ( y 1 + y 2 x i ) ] 2 \hat{z}=y_1+y_2x\Rightarrow J=\sum_{i=1}^n{\left[ z_i-\left( y_1+y_2x_i \right) \right] ^2} z^=y1+y2xJ=i=1n[zi(y1+y2xi)]2
找到 y 1 , y 2 y_1,y_2 y1,y2 使得 J J J最小

z ⃗ = [ z 1 ⋮ z n ] , [ x ⃗ ] = [ 1 x 1 ⋮ ⋮ 1 x n ] , y ⃗ = [ y 1 y 2 ] ⇒ z ⃗ ^ = [ x ⃗ ] y ⃗ = [ y 1 + y 2 x 1 ⋮ y 1 + y 2 x n ] \vec{z}=\left[ \begin{array}{c} z_1\\ \vdots\\ z_{\mathrm{n}}\\ \end{array} \right] ,\left[ \vec{x} \right] =\left[ \begin{array}{l} 1& x_1\\ \vdots& \vdots\\ 1& x_{\mathrm{n}}\\ \end{array} \right] ,\vec{y}=\left[ \begin{array}{c} y_1\\ y_2\\ \end{array} \right] \Rightarrow \hat{\vec{z}}=\left[ \vec{x} \right] \vec{y}=\left[ \begin{array}{c} y_1+y_2x_1\\ \vdots\\ y_1+y_2x_{\mathrm{n}}\\ \end{array} \right] z = z1zn ,[x ]= 11x1xn ,y =[y1y2]z ^=[x ]y = y1+y2x1y1+y2xn
J = [ z ⃗ − z ⃗ ^ ] T [ z ⃗ − z ⃗ ^ ] = [ z ⃗ − [ x ⃗ ] y ⃗ ] T [ z ⃗ − [ x ⃗ ] y ⃗ ] = z ⃗ z ⃗ T − z ⃗ T [ x ⃗ ] y ⃗ − y ⃗ T [ x ⃗ ] T z ⃗ + y ⃗ T [ x ⃗ ] T [ x ⃗ ] y ⃗ J=\left[ \vec{z}-\hat{\vec{z}} \right] ^{\mathrm{T}}\left[ \vec{z}-\hat{\vec{z}} \right] =\left[ \vec{z}-\left[ \vec{x} \right] \vec{y} \right] ^{\mathrm{T}}\left[ \vec{z}-\left[ \vec{x} \right] \vec{y} \right] =\vec{z}\vec{z}^{\mathrm{T}}-\vec{z}^{\mathrm{T}}\left[ \vec{x} \right] \vec{y}-\vec{y}^{\mathrm{T}}\left[ \vec{x} \right] ^{\mathrm{T}}\vec{z}+\vec{y}^{\mathrm{T}}\left[ \vec{x} \right] ^{\mathrm{T}}\left[ \vec{x} \right] \vec{y} J=[z z ^]T[z z ^]=[z [x ]y ]T[z [x ]y ]=z z Tz T[x ]y y T[x ]Tz +y T[x ]T[x ]y
其中: ( z ⃗ T [ x ⃗ ] y ⃗ ) T = y ⃗ T [ x ⃗ ] T z ⃗ \left( \vec{z}^{\mathrm{T}}\left[ \vec{x} \right] \vec{y} \right) ^{\mathrm{T}}=\vec{y}^{\mathrm{T}}\left[ \vec{x} \right] ^{\mathrm{T}}\vec{z} (z T[x ]y )T=y T[x ]Tz , 则有:
J = z ⃗ z ⃗ T − 2 z ⃗ T [ x ⃗ ] y ⃗ + y ⃗ T [ x ⃗ ] T [ x ⃗ ] y ⃗ J=\vec{z}\vec{z}^{\mathrm{T}}-2\vec{z}^{\mathrm{T}}\left[ \vec{x} \right] \vec{y}+\vec{y}^{\mathrm{T}}\left[ \vec{x} \right] ^{\mathrm{T}}\left[ \vec{x} \right] \vec{y} J=z z T2z T[x ]y +y T[x ]T[x ]y
进而:
∂ J ∂ y ⃗ = 0 − 2 ( z ⃗ T [ x ⃗ ] ) T + 2 [ x ⃗ ] T [ x ⃗ ] y ⃗ = ∇ y ⃗ ⟹ ∂ J ∂ y ⃗ ∗ = 0 , y ⃗ ∗ = ( [ x ⃗ ] T [ x ⃗ ] ) − 1 [ x ⃗ ] T z ⃗ \frac{\partial J}{\partial \vec{y}}=0-2\left( \vec{z}^{\mathrm{T}}\left[ \vec{x} \right] \right) ^{\mathrm{T}}+2\left[ \vec{x} \right] ^{\mathrm{T}}\left[ \vec{x} \right] \vec{y}=\nabla \vec{y}\Longrightarrow \frac{\partial J}{\partial \vec{y}^*}=0,\vec{y}^*=\left( \left[ \vec{x} \right] ^{\mathrm{T}}\left[ \vec{x} \right] \right) ^{-1}\left[ \vec{x} \right] ^{\mathrm{T}}\vec{z} y J=02(z T[x ])T+2[x ]T[x ]y =y y J=0,y =([x ]T[x ])1[x ]Tz
其中: ( [ x ⃗ ] T [ x ⃗ ] ) − 1 \left( \left[ \vec{x} \right] ^{\mathrm{T}}\left[ \vec{x} \right] \right) ^{-1} ([x ]T[x ])1不一定有解,则 y ⃗ ∗ \vec{y}^* y 无法得到解析解——定义初始 y ⃗ ∗ \vec{y}^* y y ⃗ ∗ = y ⃗ ∗ − α ∇ , α = [ α 1 0 0 α 2 ] \vec{y}^*=\vec{y}^*-\alpha \nabla ,\alpha =\left[ \begin{matrix} \alpha _1& 0\\ 0& \alpha _2\\ \end{matrix} \right] y =y α,α=[α100α2]
其中: α \alpha α称为学习率,对 x x x而言则需进行归一化

3. 矩阵求导的链式法则

标量函数: J = f ( y ( u ) ) , ∂ J ∂ u = ∂ J ∂ y ∂ y ∂ u J=f\left( y\left( u \right) \right) ,\frac{\partial J}{\partial u}=\frac{\partial J}{\partial y}\frac{\partial y}{\partial u} J=f(y(u)),uJ=yJuy

标量对向量求导: J = f ( y ⃗ ( u ⃗ ) ) , y ⃗ = [ y 1 ( u ⃗ ) ⋮ y m ( u ⃗ ) ] m × 1 , u ⃗ = [ u ⃗ 1 ⋮ u ⃗ n ] n × 1 J=f\left( \vec{y}\left( \vec{u} \right) \right) ,\vec{y}=\left[ \begin{array}{c} y_1\left( \vec{u} \right)\\ \vdots\\ y_{\mathrm{m}}\left( \vec{u} \right)\\ \end{array} \right] _{m\times 1},\vec{u}=\left[ \begin{array}{c} \vec{u}_1\\ \vdots\\ \vec{u}_{\mathrm{n}}\\ \end{array} \right] _{\mathrm{n}\times 1} J=f(y (u )),y = y1(u )ym(u ) m×1,u = u 1u n n×1

分析: ∂ J 1 × 1 ∂ u n × 1 n × 1 = ∂ J ∂ y m × 1 m × 1 ∂ y m × 1 ∂ u n × 1 n × m \frac{\partial J_{1\times 1}}{\partial u_{\mathrm{n}\times 1}}_{\mathrm{n}\times 1}=\frac{\partial J}{\partial y_{m\times 1}}_{m\times 1}\frac{\partial y_{m\times 1}}{\partial u_{\mathrm{n}\times 1}}_{\mathrm{n}\times \mathrm{m}} un×1J1×1n×1=ym×1Jm×1un×1ym×1n×m 无法相乘

y ⃗ = [ y 1 ( u ⃗ ) y 2 ( u ⃗ ) ] 2 × 1 , u ⃗ = [ u ⃗ 1 u ⃗ 2 u ⃗ 3 ] 3 × 1 \vec{y}=\left[ \begin{array}{c} y_1\left( \vec{u} \right)\\ y_2\left( \vec{u} \right)\\ \end{array} \right] _{2\times 1},\vec{u}=\left[ \begin{array}{c} \vec{u}_1\\ \vec{u}_2\\ \vec{u}_3\\ \end{array} \right] _{3\times 1} y =[y1(u )y2(u )]2×1,u = u 1u 2u 3 3×1
J = f ( y ⃗ ( u ⃗ ) ) , ∂ J ∂ u ⃗ = [ ∂ J ∂ u ⃗ 1 ∂ J ∂ u ⃗ 2 ∂ J ∂ u ⃗ 3 ] 3 × 1 ⟹ ∂ J ∂ u ⃗ 1 = ∂ J ∂ y 1 ∂ y 1 ( u ⃗ ) ∂ u ⃗ 1 + ∂ J ∂ y 2 ∂ y 2 ( u ⃗ ) ∂ u ⃗ 1 ∂ J ∂ u ⃗ 2 = ∂ J ∂ y 1 ∂ y 1 ( u ⃗ ) ∂ u ⃗ 2 + ∂ J ∂ y 2 ∂ y 2 ( u ⃗ ) ∂ u ⃗ 2 ∂ J ∂ u ⃗ 3 = ∂ J ∂ y 1 ∂ y 1 ( u ⃗ ) ∂ u ⃗ 3 + ∂ J ∂ y 2 ∂ y 2 ( u ⃗ ) ∂ u ⃗ 3 ⟹ ∂ J ∂ u ⃗ = [ ∂ y 1 ( u ⃗ ) ∂ u ⃗ 1 ∂ y 2 ( u ⃗ ) ∂ u ⃗ 1 ∂ y 1 ( u ⃗ ) ∂ u ⃗ 2 ∂ y 2 ( u ⃗ ) ∂ u ⃗ 2 ∂ y 1 ( u ⃗ ) ∂ u ⃗ 3 ∂ y 2 ( u ⃗ ) ∂ u ⃗ 3 ] 3 × 2 [ ∂ J ∂ y 1 ∂ J ∂ y 2 ] 2 × 2 = ∂ y ⃗ ( u ⃗ ) ∂ u ⃗ ∂ J ∂ y ⃗ J=f\left( \vec{y}\left( \vec{u} \right) \right) ,\frac{\partial J}{\partial \vec{u}}=\left[ \begin{array}{c} \frac{\partial J}{\partial \vec{u}_1}\\ \frac{\partial J}{\partial \vec{u}_2}\\ \frac{\partial J}{\partial \vec{u}_3}\\ \end{array} \right] _{3\times 1}\Longrightarrow \begin{array}{c} \frac{\partial J}{\partial \vec{u}_1}=\frac{\partial J}{\partial y_1}\frac{\partial y_1\left( \vec{u} \right)}{\partial \vec{u}_1}+\frac{\partial J}{\partial y_2}\frac{\partial y_2\left( \vec{u} \right)}{\partial \vec{u}_1}\\ \frac{\partial J}{\partial \vec{u}_2}=\frac{\partial J}{\partial y_1}\frac{\partial y_1\left( \vec{u} \right)}{\partial \vec{u}_2}+\frac{\partial J}{\partial y_2}\frac{\partial y_2\left( \vec{u} \right)}{\partial \vec{u}_2}\\ \frac{\partial J}{\partial \vec{u}_3}=\frac{\partial J}{\partial y_1}\frac{\partial y_1\left( \vec{u} \right)}{\partial \vec{u}_3}+\frac{\partial J}{\partial y_2}\frac{\partial y_2\left( \vec{u} \right)}{\partial \vec{u}_3}\\ \end{array} \\ \Longrightarrow \frac{\partial J}{\partial \vec{u}}=\left[ \begin{array}{l} \frac{\partial y_1\left( \vec{u} \right)}{\partial \vec{u}_1}& \frac{\partial y_2\left( \vec{u} \right)}{\partial \vec{u}_1}\\ \frac{\partial y_1\left( \vec{u} \right)}{\partial \vec{u}_2}& \frac{\partial y_2\left( \vec{u} \right)}{\partial \vec{u}_2}\\ \frac{\partial y_1\left( \vec{u} \right)}{\partial \vec{u}_3}& \frac{\partial y_2\left( \vec{u} \right)}{\partial \vec{u}_3}\\ \end{array} \right] _{3\times 2}\left[ \begin{array}{c} \frac{\partial J}{\partial y_1}\\ \frac{\partial J}{\partial y_2}\\ \end{array} \right] _{2\times 2}=\frac{\partial \vec{y}\left( \vec{u} \right)}{\partial \vec{u}}\frac{\partial J}{\partial \vec{y}} J=f(y (u )),u J= u 1Ju 2Ju 3J 3×1u 1J=y1Ju 1y1(u )+y2Ju 1y2(u )u 2J=y1Ju 2y1(u )+y2Ju 2y2(u )u 3J=y1Ju 3y1(u )+y2Ju 3y2(u )u J= u 1y1(u )u 2y1(u )u 3y1(u )u 1y2(u )u 2y2(u )u 3y2(u ) 3×2[y1Jy2J]2×2=u y (u )y J

∂ J ∂ u ⃗ = ∂ y ⃗ ( u ⃗ ) ∂ u ⃗ ∂ J ∂ y ⃗ \frac{\partial J}{\partial \vec{u}}=\frac{\partial \vec{y}\left( \vec{u} \right)}{\partial \vec{u}}\frac{\partial J}{\partial \vec{y}} u J=u y (u )y J

eg:
x ⃗ [ k + 1 ] = A x ⃗ [ k ] + B u ⃗ [ k ] , J = x ⃗ T [ k + 1 ] x ⃗ [ k + 1 ] \vec{x}\left[ k+1 \right] =A\vec{x}\left[ k \right] +B\vec{u}\left[ k \right] ,J=\vec{x}^{\mathrm{T}}\left[ k+1 \right] \vec{x}\left[ k+1 \right] x [k+1]=Ax [k]+Bu [k],J=x T[k+1]x [k+1]
∂ J ∂ u ⃗ = ∂ x ⃗ [ k + 1 ] ∂ u ⃗ ∂ J ∂ x ⃗ [ k + 1 ] = B T ⋅ 2 x ⃗ [ k + 1 ] = 2 B T x ⃗ [ k + 1 ] \frac{\partial J}{\partial \vec{u}}=\frac{\partial \vec{x}\left[ k+1 \right]}{\partial \vec{u}}\frac{\partial J}{\partial \vec{x}\left[ k+1 \right]}=B^{\mathrm{T}}\cdot 2\vec{x}\left[ k+1 \right] =2B^{\mathrm{T}}\vec{x}\left[ k+1 \right] u J=u x [k+1]x [k+1]J=BT2x [k+1]=2BTx [k+1]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1282387.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

el-pagination 纯前端分页

需求&#xff1a;后端把所有数据都返给前端&#xff0c;前端进行分页渲染。 实现思路&#xff1a;先把数据存储到一个大数组中&#xff0c;然后调用方法进行切割。主要使用数组的slice方法 所有代码&#xff1a; html <template><div style"padding: 20px&qu…

CSS 局限-contain

CSS 局限 CSS 局限规范的目标在于通过允许浏览器从页面的其余部分中隔离出页面子树而改善性能。若浏览器知道页面的某一部分为独立的&#xff0c;则可优化渲染并改善性能。 此外&#xff0c;此规范允许开发者标示元素究竟是否应当渲染其内容&#xff0c;以及在屏外时是否应当…

【程序员 | 交流】程序员情商修炼指南系列 (沟通是有效合作一大利器)

&#x1f935;‍♂️ 个人主页: AI_magician &#x1f4e1;主页地址&#xff1a; 作者简介&#xff1a;CSDN内容合伙人&#xff0c;全栈领域优质创作者。 &#x1f468;‍&#x1f4bb;景愿&#xff1a;旨在于能和更多的热爱计算机的伙伴一起成长&#xff01;&#xff01;&…

如何能够对使用ShaderGraph开发的Shader使用SetTextureOffset和SetTextureScale方法

假设在ShaderGraph中的纹理的引用名称为"_BaseMap"&#xff0c;同时对这个"_BaseMap"纹理使用了采样的节点"SampleTexture2D"&#xff0c;然后该采样节点的uv接入的TilingAndOffset节点&#xff0c;此时的关键步骤是新建一个Vector4属性&#xf…

HT7183 高功率异步升压转换器 中文资料

HT7183是一款高功率异步升压转换器&#xff0c;集成120mΩ功率开关管&#xff0c;为便携式系统提供G效的小尺寸处理方案。HT7183具有2.6V至5.5V输入电压范围&#xff0c;可为各类不同供电的应用提供支持。HT7183具备3A开关电流能力&#xff0c;并且能够提供高达16V的输出电压。…

实时绘画迎来大更新,本地即可部署

个人网站&#xff1a;https://tianfeng.space 前言 自此LCM公布以来&#xff0c;这一个星期在相关应用方面的更新速度nb&#xff0c;各种实时绘画工作流随之出现&#xff0c;之前还只能依赖krea内测资格使用&#xff0c;让我们来看看上周发生了那些事吧&#xff01; 网盘&am…

做外贸如何写开发信?外贸邮件营销怎么写?

外贸业务员写开发信的技巧&#xff1f;撰写客户开发信模板详解&#xff01; 外贸经营是一项竞争激烈的行业&#xff0c;写好开发信是吸引客户、建立合作关系的重要一环。蜂邮EDM将为您详细介绍如何撰写出色的开发信&#xff0c;以吸引客户的眼球&#xff0c;引领他们与您建立联…

YOLOv8独家原创改进:创新自研CPMS注意力,多尺度通道注意力具+多尺度深度可分离卷积空间注意力,全面升级CBAM

💡💡💡本文自研创新改进:自研CPMS, 多尺度通道注意力具+多尺度深度可分离卷积空间注意力,全面升级CBAM 1)作为注意力CPMS使用; 推荐指数:五星 CPMS | 亲测在多个数据集能够实现涨点,对标CBAM。 收录 YOLOv8原创自研 https://blog.csdn.net/m0_63774211/ca…

PTA 6-1 最小生成树(普里姆算法)使用递归

普利姆算法的原理 普里姆算法查找最小生成树的过程&#xff0c;采用了贪心算法的思想。对于包含 N 个顶点的连通网&#xff0c;普里姆算法每次从连通网中找出一个权值最小的边&#xff0c;这样的操作重复 N-1 次&#xff0c;由 N-1 条权值最小的边组成的生成树就是最小生成树。…

HarmonyOS 振动效果开发指导

Vibrator 开发概述 振动器模块服务最大化开放硬工最新马达器件能力&#xff0c;通过拓展原生马达服务实现振动与交互融合设计&#xff0c;打造细腻精致的一体化振动体验和差异化体验&#xff0c;提升用户交互效率和易用性、提升用户体验、增强品牌竞争力。 运作机制 Vibrato…

数据结构与算法-动态查找表

查找 &#x1f388;3动态查找表&#x1f52d;3.1二叉排序树&#x1f3c6;3.1.1二叉排序树的类定义&#x1f3c6;3.1.2二叉排序树的插入和生成&#x1f3c6;3.1.3二叉树的查找&#x1f3c6;3.1.4二叉排序树的删除 &#x1f52d;3.2平衡二叉树&#x1f3c6;3.2.1平衡二叉树的调整…

基于jsp的搜索引擎

摘 要 随着互联网的不断发展和日益普及&#xff0c;网上的信息量在迅速地增长&#xff0c;在2004年4月&#xff0c;全球Web页面的数目已经超过40亿&#xff0c;中国的网页数估计也超过了3亿。 目前人们从网上获得信息的主要工具是浏览器&#xff0c;搜索引擎在网络中占有举足轻…

平价的开放式耳机怎么选?推荐几款平价好用的耳机,亲测对比

是不是也在为如何在有限的预算内找到一款性价比高的开放式耳机而烦恼呢&#xff1f;别着急&#xff0c;小编为你精心挑选了几款平价好用的开放式耳机&#xff0c;并亲自进行了对比测试&#xff0c;在这个音乐时代&#xff0c;不需要花大价钱就能拥有高品质的音乐体验&#xff0…

微积分-圆的面积和周长(1)

微积分 历史 先有牛顿后有天&#xff0c;创世之后再造仙。作为近代物理学的开山鼻祖&#xff0c;牛顿的贡献怎么评价都不为过。而微积分是首先被牛顿搞出来的也已经是公认的事实&#xff0c;牛顿在研究物理问题的时候顺带做出来的&#xff0c;不知是舍不得发表还是不屑于发表…

Jmeter的安装配置,性能测试编写

1、jmeter介绍 Apache JMeter是一款纯java编写负载功能测试和性能测试开源工具软件。相比Loadrunner而言&#xff0c;JMeter小巧轻便且免费&#xff0c;逐渐成为了主流的性能测试工具&#xff0c;是每个测试人员都必须要掌握的工具之一。 运行环境为Windows 10系统&#xff0c…

电动车刷卡-CI522方案

Ci522是一颗工作在13.56MHz频率下的非接触式读写芯片&#xff0c;支持读A卡&#xff08;CI523支持读A/B卡&#xff09;&#xff0c;可做智能门锁、电动车NFC一键启动、玩具NFC开锁等应用。为部分要求低成本&#xff0c;PCB小体积的产品提供了可靠的选择。 Ci522与Si522/MFRC52…

Python函数的基本使用(一)

Python函数的基本使用&#xff08;一&#xff09; 一、函数概述二、函数的定义2.1 函数的语法2.2 语法说明2.3 函数定义的方式2.4 总结 三、函数的调用3.1 函数调用语法3.2 语法说明3.3 函数调用 四、函数的参数4.1 参数的分类4.2 必需参数4.3 默认值参数4.4 关键字参数4.5 不定…

【每日OJ —— 101. 对称二叉树】

每日OJ —— 101. 对称二叉树 1.题目&#xff1a;101. 对称二叉树2.解法2.1.算法讲解2.2.代码实现2.3.提交通过展示 1.题目&#xff1a;101. 对称二叉树 2.解法 2.1.算法讲解 1.该题是判断二叉树是否对称&#xff0c;关键在于&#xff0c;左子树等于右子树&#xff0c;而所给的…

【Linux | 编程实践】防火墙 (网络无法访问)解决方案 Vim常用快捷键命令

&#x1f935;‍♂️ 个人主页: AI_magician &#x1f4e1;主页地址&#xff1a; 作者简介&#xff1a;CSDN内容合伙人&#xff0c;全栈领域优质创作者。 &#x1f468;‍&#x1f4bb;景愿&#xff1a;旨在于能和更多的热爱计算机的伙伴一起成长&#xff01;&#xff01;&…

前端项目中获取浏览器版本的方法

在我们的前端项目中&#xff0c;navigator.userAgent属性含有当前浏览器相关信息&#xff08;比如版本号&#xff09;。 所以当我们想要获取用户当前访问的浏览器的版本时直接去解析navigator.userAgent字段就中。 废话不多说&#xff0c;下面看封装的获取浏览器版本的函数&am…