迁移学习的 PyTorch 实现

news2025/2/24 7:32:57

什么是迁移学习?

迁移学习是一种用于机器学习的技术,它使用预先训练好的模型来创建新的模型。这可以减少新创建模型所需的训练时间,因为它将继承以前学习的特性,这也将提高其准确性。

但是迁移学习能带来多大的不同呢?

为了找到答案,我们将在 PyTorch 中创建两个模型。一个模型有预先训练好的权重和偏差,另一个模型有随机初始化的权重和偏差。PyTorch 提供了在 ImageNet 数据集上预先训练的模型,该数据集包含数百万张不同的图片。为了训练我们的模型,我们将使用 Imagewoof 数据集,其中包含十种不同品种的狗的图像。我们的目标将是看到两个模型的准确性差异时,训练相同的时间。

那么让我们开始:

开始

首先,我们将导入所需的模块和库来部署我们的模型。

import os
import torch
import torchvision
import tarfile
import torch.nn as nn
import numpy as np
import torch.nn.functional as F
from torchvision.datasets.utils import download_url
from torchvision.datasets import ImageFolder
from torch.utils.data import DataLoader
import torchvision.transforms as tt
from torchvision.utils import make_grid
import torchvision.models as models
import matplotlib.pyplot as plt
%matplotlib inline

准备数据

让我们开始下载数据集并创建 PyTorch 数据集来加载数据。这将下载 imagewoof2-160.tgz 文件,并解压它。

# Dowload the dataset
dataset_url = "https://s3.amazonaws.com/fast-ai-imageclas/imagewoof2-160.tgz"
download_url(dataset_url, '.')


# Extract from archive
with tarfile.open('./imagewoof2-160.tgz', 'r:gz') as tar:
    tar.extractall(path='./data')
    
# Look into the data directory
data_dir = './data/imagewoof2-160'
print(os.listdir(data_dir))
classes = os.listdir(data_dir + "/train")
print(classes)

以上代码的输出如下:

Downloading https://s3.amazonaws.com/fast-ai-imageclas/imagewoof2-160.tgz to ./imagewoof2-160.tgz
HBox(children=(FloatProgress(value=1.0, bar_style='info', max=1.0), HTML(value='')))


['train', 'val']
['n02115641', 'n02089973', 'n02099601', 'n02088364', 'n02086240', 'n02105641', 'n02111889', 'n02087394', 'n02093754', 'n02096294']

这表明我们的数据文件夹有一个“ train”和一个“ val”文件夹。每个类别都有10个文件夹,里面都有相应的狗的照片。图像是彩色的,所以它有3个通道(RGB)与最小的尺寸是160像素。为了从文件夹形成一个数据集,我们将使用 Pytorch 的内置数据集制作器称为“ ImageFolder”。但在此之前,我们将在创建 PyTorch 数据集时做一些重要的修改:

1. 通道数据标准化:我们将通过减去平均值并除以每个通道的标准差来标准化图像张量。因此,通过每个通道的数据的平均值是0,标准差是1。规范化的数据防止数值在训练过程中从任何一个通道不成比例地影响损失和梯度。

2. 随机数据增强:我们将应用随机选择的转换,同时从训练数据集加载图像。具体来说,我们将每张图片填充4个像素,然后随机裁剪160 × 160个像素,然后以50% 的概率水平翻转图片。由于每次加载一个特定的图像时都会随机动态地应用转换,因此模型在每个训练阶段看到的图像略有不同,这使得它能够更好地进行泛化

注意:对于我们的验证集,我们不会使用随机数据增强,因为我们希望它在整个培训过程中保持静态。我们将对验证集进行规范化和调整大小,使其与训练数据相匹配。

# Data transforms (normalization & data augmentation)
stats = ((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
train_tfms = tt.Compose([tt.RandomCrop(160, padding=4, padding_mode='reflect'), 
                         tt.RandomHorizontalFlip(), 
                         tt.ToTensor(), 
                         tt.Normalize(*stats,inplace=True)])
valid_tfms = tt.Compose([tt.Resize([160,160]),tt.ToTensor(), tt.Normalize(*stats)])
train_ds = ImageFolder(data_dir+'/train', train_tfms)
valid_ds = ImageFolder(data_dir+'/val', valid_tfms)
print(f'Length of training dataset = {len(train_ds)}')
print(f'Length of validation dataset = {len(valid_ds)}')

创建数据记录器

现在我们将定义一个批处理大小并在数据加载器中加载数据集。

batch_size = 64
# PyTorch data loaders
train_dl = DataLoader(train_ds, batch_size, shuffle=True, num_workers=3, pin_memory=True)
valid_dl = DataLoader(valid_ds, batch_size*2, num_workers=3, pin_memory=True)

现在让我们看一下来自训练数据加载器的一些示例图像。为此,我们将定义一个 helper 函数并调用它。

def show_batch(dl):
    for images, labels in dl:
        fig, ax = plt.subplots(figsize=(12, 12))
        ax.set_xticks([]); ax.set_yticks([])
        ax.imshow(make_grid(images[:64], nrow=8).permute(1, 2, 0))
        break


show_batch(train_dl)

d8bbf4c2b972f818968faca7ecd1832c.png

由于标准化,这些颜色似乎不合适。注意,在推理过程中还应用了标准化。如果你仔细看,你可以看到一些图像的裁剪和反射填充。水平翻转有点难以直观看出来。

使用 GPU

为了无缝地使用 GPU(如果有的话),我们定义了两个辅助函数(get_default_device & to_device)和一个辅助类 DeviceDataLoader 来根据需要将我们的模型和数据移动到 GPU上。

def get_default_device():
    """Pick GPU if available, else CPU"""
    if torch.cuda.is_available():
        return torch.device('cuda')
    else:
        return torch.device('cpu')
    
def to_device(data, device):
    """Move tensor(s) to chosen device"""
    if isinstance(data, (list,tuple)):
        return [to_device(x, device) for x in data]
    return data.to(device, non_blocking=True)


class DeviceDataLoader():
    """Wrap a dataloader to move data to a device"""
    def __init__(self, dl, device):
        self.dl = dl
        self.device = device
        
    def __iter__(self):
        """Yield a batch of data after moving it to device"""
        for b in self.dl: 
            yield to_device(b, self.device)


    def __len__(self):
        """Number of batches"""
        return len(self.dl)

根据运行笔记本的位置,您的默认设备可以是 CPU (torch.device (‘ CPU’))或 GPU (torch.device (‘ cuda’))。

device = get_default_device()
device
device(type='cuda')

我们现在可以使用 DeviceDataLoader 处理我们的训练和验证数据加载器,以便自动将批量数据传输到 GPU (如果可用的话)。

train_dl = DeviceDataLoader(train_dl, device)
valid_dl = DeviceDataLoader(valid_dl, device)

基于批量归一化的预训练 ResNet 模型的定义

我们将使用 PyTorch 的内置模型架构 ResNet50,它使用一个带有残余块的卷积神经网络。这个模型的输出有1000个功能。因此,我们将输出特性改为10,因为我们的数据集有10个输出类。我们已经设置了 pretrained = True,所以当模型初始化时,它会从互联网上下载预训练的参数并将它们添加到我们的模型中。

def accuracy(outputs, labels):
    _, preds = torch.max(outputs, dim=1)
    return torch.tensor(torch.sum(preds == labels).item() / len(preds))


class ImageClassificationBase(nn.Module):
    def training_step(self, batch):
        images, labels = batch 
        out = self(images)                  # Generate predictions
        loss = F.cross_entropy(out, labels) # Calculate loss
        return loss
    
    def validation_step(self, batch):
        images, labels = batch 
        out = self(images)                    # Generate predictions
        loss = F.cross_entropy(out, labels)   # Calculate loss
        acc = accuracy(out, labels)           # Calculate accuracy
        return {'val_loss': loss.detach(), 'val_acc': acc}
        
    def validation_epoch_end(self, outputs):
        batch_losses = [x['val_loss'] for x in outputs]
        epoch_loss = torch.stack(batch_losses).mean()   # Combine losses
        batch_accs = [x['val_acc'] for x in outputs]
        epoch_acc = torch.stack(batch_accs).mean()      # Combine accuracies
        return {'val_loss': epoch_loss.item(), 'val_acc': epoch_acc.item()}
    
    def epoch_end(self, epoch, result):
        print("Epoch [{}], last_lr: {:.5f}, train_loss: {:.4f}, val_loss: {:.4f}, val_acc: {:.4f}".format(
            epoch, result['lrs'][-1], result['train_loss'], result['val_loss'], result['val_acc']))
class Resnet50(ImageClassificationBase):
    def __init__(self):
        super().__init__()
        # Use a pretrained model
        self.network = models.resnet50(pretrained=True)
        # Replace last layer
        num_ftrs = self.network.fc.in_features
        self.network.fc = nn.Linear(num_ftrs, 10)
    
    def forward(self, xb):
        return torch.sigmoid(self.network(xb))
    
    def freeze(self):
        # To freeze the residual layers
        for param in self.network.parameters():
            param.require_grad = False
        for param in self.network.fc.parameters():
            param.require_grad = True
    
    def unfreeze(self):
        # Unfreeze all layers
        for param in self.network.parameters():
            param.require_grad = True
model = to_device(Resnet50(), device)
model
Resnet34(
  (network): ResNet(
    (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
    (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu): ReLU(inplace=True)
    (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
    (layer1): Sequential(
      (0): Bottleneck(
        (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (downsample): Sequential(
          (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (1): Bottleneck(
        (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
      )
      (2): Bottleneck(
        (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
      )
    )
    (layer2): Sequential(
      (0): Bottleneck(
        (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (downsample): Sequential(
          (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
          (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (1): Bottleneck(
        (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
      )
      (2): Bottleneck(
        (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
      )
      (3): Bottleneck(
        (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
      )
    )
    (layer3): Sequential(
      (0): Bottleneck(
        (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (downsample): Sequential(
          (0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)
          (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (1): Bottleneck(
        (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
      )
      (2): Bottleneck(
        (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
      )
      (3): Bottleneck(
        (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
      )
      (4): Bottleneck(
        (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
      )
      (5): Bottleneck(
        (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
      )
    )
    (layer4): Sequential(
      (0): Bottleneck(
        (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (downsample): Sequential(
          (0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)
          (1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (1): Bottleneck(
        (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
      )
      (2): Bottleneck(
        (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
      )
    )
    (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
    (fc): Linear(in_features=2048, out_features=10, bias=True)
  )
)

模型的训练函数

在我们训练这个模型之前,我们将对我们的 fit 函数做一些小的但是重要的改进:

学习速率调度: 我们不使用固定的学习速率,而是使用一个学习速率调度器,它将改变每一批训练后的学习速率。在训练过程中有许多改变学习速度的策略,我们将使用的一个策略称为“一个周期”。

学习率策略:从低学习率开始,在30% 左右的时间内逐批提高到高学习率,然后在剩下的时间内逐渐降低到很低的学习率。

权重衰减:我们还使用了权重衰减法,这是另一种正则化技术,通过在损失函数中增加一个项来防止权重变得过大。

梯度裁剪:除了层的权重和输出,它还有助于限制梯度值的小范围,以防止不良变化的参数由于大梯度值。这种简单而有效的技术被称为梯度裁剪。

让我们定义一个 fit_one_cycle 函数来包含这些变化,我们还将记录每批次使用的学习率。

@torch.no_grad()
def evaluate(model, val_loader):
    model.eval()
    outputs = [model.validation_step(batch) for batch in val_loader]
    return model.validation_epoch_end(outputs)


def get_lr(optimizer):
    for param_group in optimizer.param_groups:
        return param_group['lr']


def fit_one_cycle(epochs, max_lr, model, train_loader, val_loader, 
                  weight_decay=0, grad_clip=None, opt_func=torch.optim.SGD):
    torch.cuda.empty_cache()
    history = []
    
    # Set up cutom optimizer with weight decay
    optimizer = opt_func(model.parameters(), max_lr, weight_decay=weight_decay)
    # Set up one-cycle learning rate scheduler
    sched = torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr, epochs=epochs, 
                                                steps_per_epoch=len(train_loader))
    
    for epoch in range(epochs):
        # Training Phase 
        model.train()
        train_losses = []
        lrs = []
        for batch in train_loader:
            loss = model.training_step(batch)
            train_losses.append(loss)
            loss.backward()
            
            # Gradient clipping
            if grad_clip: 
                nn.utils.clip_grad_value_(model.parameters(), grad_clip)
            
            optimizer.step()
            optimizer.zero_grad()
            
            # Record & update learning rate
            lrs.append(get_lr(optimizer))
            sched.step()
        
        # Validation phase
        result = evaluate(model, val_loader)
        result['train_loss'] = torch.stack(train_losses).mean().item()
        result['lrs'] = lrs
        model.epoch_end(epoch, result)
        history.append(result)
    return history
history = [evaluate(model, valid_dl)]
history
[{'val_loss': 2.296131134033203, 'val_acc': 0.12421280145645142}]

训练

首先,冻结 ResNet 图层并训练一些 epoch,这只是训练最后一层开始对图像进行分类。

model.freeze()

我们现在准备训练我们的模型。

epochs = 10
max_lr = 0.0001
grad_clip = 0.1
weight_decay = 1e-4
opt_func = torch.optim.Adam
%%time
history += fit_one_cycle(epochs, max_lr, model, train_dl, valid_dl, 
                             grad_clip=grad_clip, 
                             weight_decay=weight_decay, 
                             opt_func=opt_func)

经过6分17秒的训练,我们的模型达到了90% 的准确率。我们可以绘制精确度和损失的图表,看到我们的模型每个 epoch 的演变。

def plot_accuracies(history):
    accuracies = [x['val_acc'] for x in history]
    plt.plot(accuracies, '-x')
    plt.xlabel('epoch')
    plt.ylabel('accuracy')
    plt.title('Accuracy vs. No. of epochs');
plot_accuracies(history)

6069440c41382e2bddeaa90c7e086685.png

def plot_losses(history):
    train_losses = [x.get('train_loss') for x in history]
    val_losses = [x['val_loss'] for x in history]
    plt.plot(train_losses, '-bx')
    plt.plot(val_losses, '-rx')
    plt.xlabel('epoch')
    plt.ylabel('loss')
    plt.legend(['Training', 'Validation'])
    plt.title('Loss vs. No. of epochs');
plot_losses(history)

3bef71d7c6a27b65de3cefc9b2b47b9d.png

现在让我们看看,如果我们不使用预先训练好的模型,会有多大的不同。

用随机初始化的参数定义 ResNet 模型

我们将再次使用 PyTorch 的内置模型架构 ResNet50,并将其输出特征从1000减少到10。但是这次我们将设置 pretrained = False。

class Resnet50_np(ImageClassificationBase):
    def __init__(self):
        super().__init__()
        # Use a pretrained model
        self.network = models.resnet50(pretrained=False)
        # Replace last layer
        num_ftrs = self.network.fc.in_features
        self.network.fc = nn.Linear(num_ftrs, 10)
    
    def forward(self, xb):
        return torch.sigmoid(self.network(xb))
model = to_device(Resnet50_np(), device)
model
Resnet50_np(
  (network): ResNet(
    (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
    (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu): ReLU(inplace=True)
    (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
    (layer1): Sequential(
      (0): Bottleneck(
        (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (downsample): Sequential(
          (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (1): Bottleneck(
        (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
      )
      (2): Bottleneck(
        (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
      )
    )
    (layer2): Sequential(
      (0): Bottleneck(
        (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (downsample): Sequential(
          (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
          (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (1): Bottleneck(
        (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
      )
      (2): Bottleneck(
        (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
      )
      (3): Bottleneck(
        (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
      )
    )
    (layer3): Sequential(
      (0): Bottleneck(
        (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (downsample): Sequential(
          (0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)
          (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (1): Bottleneck(
        (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
      )
      (2): Bottleneck(
        (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
      )
      (3): Bottleneck(
        (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
      )
      (4): Bottleneck(
        (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
      )
      (5): Bottleneck(
        (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
      )
    )
    (layer4): Sequential(
      (0): Bottleneck(
        (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (downsample): Sequential(
          (0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)
          (1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (1): Bottleneck(
        (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
      )
      (2): Bottleneck(
        (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
      )
    )
    (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
    (fc): Linear(in_features=2048, out_features=10, bias=True)
  )
)
history = [evaluate(model, valid_dl)]
history
[{'val_loss': 2.390498638153076, 'val_acc': 0.1010584682226181}]

训练我们的新模型

epochs = 10
max_lr = 0.0001
grad_clip = 0.1
weight_decay = 1e-4
opt_func = torch.optim.Adam
%%time
history += fit_one_cycle(epochs, max_lr, model, train_dl, valid_dl, 
                             grad_clip=grad_clip, 
                             weight_decay=weight_decay, 
                             opt_func=opt_func)
Epoch [0], last_lr: 0.00003, train_loss: 2.2902, val_loss: 2.2740, val_acc: 0.1371
Epoch [1], last_lr: 0.00008, train_loss: 2.2404, val_loss: 2.2038, val_acc: 0.1733
Epoch [2], last_lr: 0.00010, train_loss: 2.1558, val_loss: 2.1367, val_acc: 0.2148
Epoch [3], last_lr: 0.00010, train_loss: 2.1181, val_loss: 2.1076, val_acc: 0.2314
Epoch [4], last_lr: 0.00008, train_loss: 2.0963, val_loss: 2.1132, val_acc: 0.2310
Epoch [5], last_lr: 0.00006, train_loss: 2.0660, val_loss: 2.0577, val_acc: 0.2906
Epoch [6], last_lr: 0.00004, train_loss: 2.0395, val_loss: 2.0279, val_acc: 0.3014
Epoch [7], last_lr: 0.00002, train_loss: 2.0136, val_loss: 2.0171, val_acc: 0.3147
Epoch [8], last_lr: 0.00000, train_loss: 1.9977, val_loss: 2.0056, val_acc: 0.3239
Epoch [9], last_lr: 0.00000, train_loss: 1.9896, val_loss: 2.0015, val_acc: 0.3328
CPU times: user 2min 42s, sys: 52.8 s, total: 3min 35s
Wall time: 6min 16s

在相同的训练时间和时间内,我们的新模型只能达到33% 的准确率。我们可以绘制精确度和损失的图表,看到我们的模型每个 epoch 的演变。

plot_accuracies(history)

66f8cb53d728906348b0a1441d3bfcdd.png

plot_losses(history)

9aab058735122addcf7c25e4ec446c4a.png

结论

通过比较两个模型的准确性,可以看出转移学习对第一个模型的结果有显著的促进作用。在相同的训练时间内,我们的预训练模型能够达到90% 的准确率,而随机初始化权重和偏差的模型只能达到预训练模型准确率的三分之一以上。随着训练时间的延长,准确率的提高逐渐减小,达到90% 的准确率,随机初始化模型需要较长的时间。这表明,如果正确使用迁移学习,可以使新模型的训练过程非常有效。

·  END  ·

HAPPY LIFE

bfd752c294ba9c478c7c34d60b59afe6.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/127979.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

销售促单话术

销售过程中,销售不仅可以运用一些销售技巧来吸引客户的兴趣,也可以通过一些话术来获得客户的认同。 ​ 前言 销售过程中,销售不仅可以运用一些销售技巧来吸引客户的兴趣,也可以通过一些话术来获得客户的认同。很多销售一定遇到过…

【观察】全面赋能汽车行业数字化转型,亚马逊云科技的决心与诚意

毫无疑问,新一轮科技革命正在驱动整个汽车产业发生颠覆性的重大变革,传统的行业游戏规则也将在数字化时代被改写,而未来以电动化、智能化、互联化、共享化为特征的“新四化”,也正在成为整个汽车产业技术创新和商业模式进化的新方…

一文带你走进Python文件操作

Py文件操作 一: """ 1.找到这个文件,双击打开 ​ open(文件路径,mode"",encoding"") mode>读/写 encoding>文件的编码集是什么 ​文件路径:1.绝对路径d:Tools/Tool/python/a.txt 不安全2.相对路径相对于当前你的程序所在的文件夹…

回首来时路,未来皆坦途.......

不觉间,又到了年末,这一年似乎并没有什么特别的经历和值得一提的业绩,就是这样平淡的过着每一天,这大概就是普通人的人生吧..... 今年最大的改变就是跨行业成长,从事了售前工程师的工作,由于之前并没有相关…

20221230英语学习

今日单词 agreeable adj.惬意的,宜人的;可接受的,适合的;欣然同意的 gleam v.发微光;闪烁;隐约闪光;(在眼中)闪现;表露 hypothesis n.[复数hypotheses] 假…

CSS3 filter滤镜

filter 顾名思义就是过滤的意思 使用 filter属性为元素(常用于<img>)带来视觉的效果 filter描述none默认值&#xff0c;没有效果。blur(px)给图像设置模糊效果。默认是0&#xff1b;这个参数可设置css长度值&#xff0c;但不接受百分比值。brightness(%)调整图像的对比…

main 方法演示 spring 注解方式获取 bean

文章目录一、环境准备1、创建 Java 工程&#xff0c;引入 spring 相关 jar 包2、构建 path二、开发1、准备一个 User 类2、编写配置类 BeanConfig3、编写测试类 SpringTest4、验证结果本文章使用 JavaSE 方式&#xff0c;创建含有 main 方法的类&#xff0c;演示如何用简单的方…

用天翎低代码做办公协同软件,简单高效

编者按&#xff1a;在数字办公流行的现在&#xff0c;办公协同软件是企业必备。本文分析了办公协同软件的作用&#xff0c;并指出了基于低代码平台实现的办公协同软件可以很好地满足企业需求&#xff0c;最后进行了相关案例展示。 关键词&#xff1a;私有化部署&#xff0c;数…

从云原生实战峰会,透视2023年云原生发展趋势

CSDN&#xff1a;如果用两个关键词来总结 2022 年云原生的发展态势&#xff0c;您会有哪些评价&#xff1f;——繁荣和普惠。“繁荣”代表当前云原生的技术和产品蓬勃发展&#xff1b;“普惠”代表云原生技术从互联网走向金融、零售、政企等行业&#xff0c;普惠千行百业构建丰…

MySQL学习笔记(十五)行锁表锁间隙锁临键锁共享锁排他锁死锁

行锁表锁间隙锁临键锁共享锁排他锁死锁手动提交行锁&#xff08;记录锁Record Locks&#xff09;表锁间隙锁&#xff08;Gap Locks&#xff09;临键锁&#xff08;Next-Key Locks&#xff09;共享锁&#xff0c;排他锁死锁查看事物&#xff0c;锁的命令死锁的4个必要条件模拟死…

odoo学习之security, menu, tree, form

security 在ir.model.access.csv中 id,name,model_id:id,group_id:id,perm_read,perm_write,perm_create,perm_unlink可以设置成 access_org_info,org.info,model_org_info,,1,1,1,1其中&#xff1a;access_org_info&#xff1a;access_为固定开头&#xff0c;org_info为模块…

Mol2Image: Improved Conditional Flow Models for Molecule to Image Synthesis

Mol2Image: 连接药物分子与细胞显微图像的条件流模型【2021CVPR】 Mol2Image: Improved Conditional Flow Models for Molecule to Image Synthesis paper&#xff1a;Improved Conditional Flow Models for Molecule to Image Synthesis | Papers With Code code&#xff1…

谷粒商城之高级篇(3)

2 商城业务 2.7 订单服务 2.7.22 创建业务交换机&队列 这里承接 知识补充篇 6 RabbitMQ 订单分布式主体逻辑 订单超时未支付触发订单过期状态修改与库存解锁 创建订单时消息会被发送至队列order.delay.queue&#xff0c;经过TTL的时间后消息会变成死信以order.release…

如何配置 SLO

前言 无论是对外提供 IaaS PaaS SaaS 的云公司&#xff0c;还是提供信息技术服务的乙方公司&#xff0c;亦或是金融 制造等各行各业的数据中心、运维部门&#xff0c;我们的一个非常重要的合同承诺或考核评估指标就是&#xff1a;SLA&#xff08;即&#xff1a;Service-Level …

蓝桥杯算法训练:FBI树(c++实现+图文详解)

文章目录FBI树C代码示例FBI树 题目要求 我们可以把由“0”和“1”组成的字符串分为三类&#xff1a;全“0”串称为B串&#xff0c;全“1”串称为I串&#xff0c;既含“0”又含“1”的串则称为F串。 FBI树是一种二叉树&#xff0c;它的结点类型也包括F结点&#xff0c;B结点和I…

某公司高管疾呼:底层程序员离职率太高,有人入职不到半年就走!建议把恶意离职加入征信,让年轻人对公司有起码的尊重!...

许多人入职后才发现公司有各种难以忍受的问题&#xff0c;入职时间很短就被迫离职&#xff0c;这本是无可奈何的事&#xff0c;但一位公司高管却对此非常愤怒&#xff0c;指出“目前基层程序员离职率太高&#xff0c;有人入职不到半年就走了”&#xff0c;还建议把恶意离职加入…

MVC开发模式

1、JSP演变历史 1、早期只有servlet&#xff0c;只能使用response输出标签数据&#xff0c;非常麻烦 2、后来又有了jsp&#xff0c;简化了Servlet的开发&#xff0c;但如果过度使用jsp&#xff0c;在jsp中即写大量的Java代码&#xff0c;又有HTML&#xff0c;会造成难以维护&am…

【红黑树】

红黑树红黑树的概念红黑树的性质红黑树结点的定义红黑树的插入红黑树的验证红黑树的查找红黑树与AVL树的比较红黑树的概念 红黑树是一种二叉搜索树&#xff0c;但在每个结点上增加了一个存储位用于表示结点的颜色&#xff0c;这个颜色可以是红色的&#xff0c;也可以是黑色的&a…

主存储器扩展技术(计组)

用已有的存储器芯片构造一个需要的存储空间。 位扩展–扩展字长 构成内存的存储器芯片的字长小于内存单元要求的字长时–需要进行位扩展。实例&#xff1a; 位扩展的连线特点&#xff1a; 将每片的地址线、控制线并联&#xff0c;数据线分别引出。 效果&#xff1a; 存…

JavaSE笔记——函数式编程(流)

文章目录前言一、从外部迭代到内部迭代二、实现机制三、常用的流操作1.collect(toList())2.map3.filter4.flatMap5.max和min6.reduce四、多次调用流操作五、高阶函数总结前言 流是一系列与特定存储机制无关的元素——实际上&#xff0c;流并没有 “存储” 之说。利用流&#x…