使用opencv实现更换证件照背景颜色

news2025/1/11 20:42:24

1 概述

生活中经常要用到各种要求的证件照电子版,红底,蓝底,白底等,大部分情况我们只有其中一种,本文通过opencv实现证件照背景的颜色替换。

1.1 opencv介绍

OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库。它最初由英特尔在1999年开发,后来由Willow Garage和Itseez(现为部分的Intel)维护。OpenCV旨在提供一个易于使用的计算机视觉基础设施,帮助人们实现复杂的视觉分析任务。

1.2 RGB介绍

RGB 是我们接触最多的颜色空间,由三个通道表示一幅图像,分别为红色(R),绿色(G)和蓝色(B)。这三种颜色的不同组合可以形成几乎所有的其他颜色。

RGB 颜色空间是图像处理中最基本、最常用、面向硬件的颜色空间,比较容易理解。RGB 颜色空间利用三个颜色分量的线性组合来表示颜色,任何颜色都与这三个分量有关,而且这三个分量是高度相关的,所以连续变换颜色时并不直观,想对图像的颜色进行调整需要更改这三个分量才行。

自然环境下获取的图像容易受自然光照、遮挡和阴影等情况的影响,即对亮度比较敏感。而 RGB 颜色空间的三个分量都与亮度密切相关,即只要亮度改变,三个分量都会随之相应地改变,而没有一种更直观的方式来表达。

但是人眼对于这三种颜色分量的敏感程度是不一样的,在单色中,人眼对红色最不敏感,蓝色最敏感,所以 RGB 颜色空间是一种均匀性较差的颜色空间。如果颜色的相似性直接用欧氏距离来度量,其结果与人眼视觉会有较大的偏差。对于某一种颜色,我们很难推测出较为精确的三个分量数值来表示。所以,RGB 颜色空间适合于显示系统,却并不适合于图像处理。

1.3 HSV 颜色空间

基于上述理由,在图像处理中使用较多的是 HSV 颜色空间,它比 RGB 更接近人们对彩色的感知经验。非常直观地表达颜色的色调、鲜艳程度和明暗程度,方便进行颜色的对比。在 HSV 颜色空间下,比 BGR 更容易跟踪某种颜色的物体,常用于分割指定颜色的物体。

HSV 表达彩色图像的方式由三个部分组成:

  • Hue(色调、色相)
  • Saturation(饱和度、色彩纯净度)
  • Value(明度)

用下面这个圆柱体来表示 HSV 颜色空间,圆柱体的横截面可以看做是一个极坐标系 ,H 用极坐标的极角表示,S 用极坐标的极轴长度表示,V 用圆柱中轴的高度表示。

Hue 用角度度量,取值范围为0~360°,表示色彩信息,即所处的光谱颜色的位置。表示如下: 

颜色圆环上所有的颜色都是光谱上的颜色,从红色开始按逆时针方向旋转,Hue=0 表示红色,Hue=120 表示绿色,Hue=240 表示蓝色等等。在 GRB中 颜色由三个值共同决定,比如黄色为即 (255,255,0);在HSV中,黄色只由一个值决定,Hue=60即可。

HSV 圆柱体的半边横截面(Hue=60):

 其中水平方向表示饱和度,饱和度表示颜色接近光谱色的程度。饱和度越高,说明颜色越深,越接近光谱色饱和度越低,说明颜色越浅,越接近白色。饱和度为0表示纯白色。取值范围为0~100%,值越大,颜色越饱和。

竖直方向表示明度,决定颜色空间中颜色的明暗程度,明度越高,表示颜色越明亮,范围是 0-100%。明度为0表示纯黑色(此时颜色最暗)。

可以通俗理解为:

在Hue一定的情况下,饱和度减小,就是往光谱色中添加白色,光谱色所占的比例也在减小,饱和度减为0,表示光谱色所占的比例为零,导致整个颜色呈现白色。

明度减小,就是往光谱色中添加黑色,光谱色所占的比例也在减小,明度减为0,表示光谱色所占的比例为零,导致整个颜色呈现黑色。

HSV 对用户来说是一种比较直观的颜色模型。我们可以很轻松地得到单一颜色,即指定颜色角H,并让V=S=1,然后通过向其中加入黑色和白色来得到我们需要的颜色。增加黑色可以减小V而S不变,同样增加白色可以减小S而V不变。例如,要得到深蓝色,V=0.4 S=1 H=240度。要得到浅蓝色,V=1 S=0.4 H=240度。

HSV 的拉伸对比度增强就是对 S 和 V 两个分量进行归一化(min-max normalize)即可,H 保持不变。

RGB颜色空间更加面向于工业,而HSV更加面向于用户,大多数做图像识别这一块的都会运用HSV颜色空间,因为HSV颜色空间表达起来更加直观!

1.4 HLS 颜色空间

HLS 和 HSV 比较类似,这里一起介绍。HLS 也有三个分量,hue(色相)、saturation(饱和度)、lightness(亮度)。

HLS 和 HSV 的区别就是最后一个分量不同,HLS 的是 light(亮度),HSV 的是 value(明度)。

HLS 中的 L 分量为亮度,亮度为100,表示白色,亮度为0,表示黑色;HSV 中的 V 分量为明度,明度为100,表示光谱色,明度为0,表示黑色。

下面是 HLS 颜色空间圆柱体:

提取白色物体时,使用 HLS 更方便,因为 HSV 中的Hue里没有白色,白色需要由S和V共同决定(S=0, V=100)。而在 HLS 中,白色仅由亮度L一个分量决定。所以检测白色时使用 HSL 颜色空间更准确。

注意:在 OpenCV 中 HLS 三个分量的范围为:

  • H = [0,179]
  • L = [0,255]
  • S = [0,255]

2 使用opencv替换证件照背景颜色

2.1 导入图片并改变图片大小

原始图片:

代码实现:

img = cv2.imread('../data/card_girl01.jpeg')

# 缩放
rows, cols, channels = img.shape
img = cv2.resize(img, None, fx=0.5, fy=0.5)
rows, cols, channels = img.shape

2.2 获取背景区域

首先将读取的图像默认BGR格式转换为HSV格式,然后通过inRange函数获取背景的mask。

代码实现:

# 转换hsv
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
lower_blue = np.array([78, 43, 46])
upper_blue = np.array([110, 255, 255])
mask_img = cv2.inRange(hsv, lower_blue, upper_blue)

new_image = show_multi_imgs(4, [img, cv2.cvtColor(mask_img, cv2.COLOR_GRAY2BGR)], (1, 2))
cv2.namedWindow('img&mask_img', 0)
cv2.imshow('img&mask_img', new_image)
cv2.waitKey(0)

运行代码显示:

如图所示蓝色的背景在图中用白色表示,白色区域就是要替换的部分,但是黑色区域内有白点干扰,所以进一步优化。

2.3 腐蚀和膨胀

代码实现:

# 腐蚀膨胀
erode_img = cv2.erode(mask_img, None, iterations=1)

new_image = show_multi_imgs(4, [img, cv2.cvtColor(erode_img, cv2.COLOR_GRAY2BGR)], (1, 2))
cv2.namedWindow('img&erode_img', 0)
cv2.imshow('img&erode_img', new_image)
cv2.waitKey(0)

dilate_img = cv2.dilate(erode_img, None, iterations=1)
new_image = show_multi_imgs(4, [img, cv2.cvtColor(dilate_img, cv2.COLOR_GRAY2BGR)], (1, 2))
cv2.namedWindow('img&dilate_img', 0)
cv2.imshow('img&dilate_img', new_image)
cv2.waitKey(0)

运行代码显示:

处理后图像单独白色点消失。

2.4 替换背景色

遍历全部像素点,如果该颜色为dilate里面为白色(255)则说明该点所在背景区域,于是在原图img中进行颜色替换。

示例代码:

# 遍历替换
final_img = img.copy()
for i in range(rows):
    for j in range(cols):
        if dilate_img[i, j] == 255:
            # 此处替换颜色,为BGR通道
            final_img[i, j] = (0, 0, 255)

new_image = show_multi_imgs(4, [img, final_img], (1, 2))
cv2.namedWindow('img&final_img', 0)
cv2.imshow('img&final_img', new_image)
cv2.waitKey(0)

 运行代码显示:

2.5 完整代码

import cv2
import numpy as np


# 一个窗口显示多张图片
def show_multi_imgs(scale, imglist, order=None, border=10, border_color=(255, 255, 0)):
    """
    :param scale: float 原图缩放的尺度
    :param imglist: list 待显示的图像序列
    :param order: list or tuple 显示顺序 行×列
    :param border: int 图像间隔距离
    :param border_color: tuple 间隔区域颜色
    :return: 返回拼接好的numpy数组
    """
    if order is None:
        order = [1, len(imglist)]
    allimgs = imglist.copy()
    ws, hs = [], []
    for i, img in enumerate(allimgs):
        if np.ndim(img) == 2:
            allimgs[i] = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
        allimgs[i] = cv2.resize(img, dsize=(0, 0), fx=scale, fy=scale)
        ws.append(allimgs[i].shape[1])
        hs.append(allimgs[i].shape[0])
    w = max(ws)
    h = max(hs)

    # 将待显示图片拼接起来
    sub = int(order[0] * order[1] - len(imglist))

    # 判断输入的显示格式与待显示图像数量的大小关系
    if sub > 0:
        for s in range(sub):
            allimgs.append(np.zeros_like(allimgs[0]))
    elif sub < 0:
        allimgs = allimgs[:sub]
    imgblank = np.zeros(((h+border) * order[0], (w+border) * order[1], 3)) + border_color
    imgblank = imgblank.astype(np.uint8)
    for i in range(order[0]):
        for j in range(order[1]):
            imgblank[(i * h + i*border):((i + 1) * h+i*border), (j * w + j*border):((j + 1) * w + j*border), :] = allimgs[i * order[1] + j]
    return imgblank


img = cv2.imread('../data/card_girl01.jpeg')

# 缩放
rows, cols, channels = img.shape
img = cv2.resize(img, None, fx=0.5, fy=0.5)
rows, cols, channels = img.shape

# 转换hsv
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
lower_blue = np.array([78, 43, 46])
upper_blue = np.array([110, 255, 255])
mask_img = cv2.inRange(hsv, lower_blue, upper_blue)

new_image = show_multi_imgs(4, [img, cv2.cvtColor(mask_img, cv2.COLOR_GRAY2BGR)], (1, 2))
cv2.namedWindow('img&mask_img', 0)
cv2.imshow('img&mask_img', new_image)
cv2.waitKey(0)

# 腐蚀膨胀
erode_img = cv2.erode(mask_img, None, iterations=1)

new_image = show_multi_imgs(4, [img, cv2.cvtColor(erode_img, cv2.COLOR_GRAY2BGR)], (1, 2))
cv2.namedWindow('img&erode_img', 0)
cv2.imshow('img&erode_img', new_image)
cv2.waitKey(0)

dilate_img = cv2.dilate(erode_img, None, iterations=1)
new_image = show_multi_imgs(4, [img, cv2.cvtColor(dilate_img, cv2.COLOR_GRAY2BGR)], (1, 2))
cv2.namedWindow('img&dilate_img', 0)
cv2.imshow('img&dilate_img', new_image)
cv2.waitKey(0)

# 遍历替换
final_img = img.copy()
for i in range(rows):
    for j in range(cols):
        if dilate_img[i, j] == 255:
            # 此处替换颜色,为BGR通道
            final_img[i, j] = (0, 0, 255)

new_image = show_multi_imgs(4, [img, final_img], (1, 2))
cv2.namedWindow('img&final_img', 0)
cv2.imshow('img&final_img', new_image)
cv2.waitKey(0)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1264896.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Leetcode 380. O(1) 时间插入、删除和获取随机元素

文章目录 题目代码&#xff08;11.28 首刷看解析&#xff09; 题目 Leetcode 380. O(1) 时间插入、删除和获取随机元素 代码&#xff08;11.28 首刷看解析&#xff09; 1.length:表示的是数组的长度 数组 2.length():表示的是字符串的长度 字符串 3.size():表示的是集合中有多…

人工智能|机器学习——感知器算法原理与python实现

感知器算法是一种可以直接得到线性判别函数的线性分类方法&#xff0c;它是基于样本线性可分的要求下使用的。 一、线性可分与线性不可分 为了方便讨论&#xff0c;我们蒋样本增加了以为常数&#xff0c;得到增广样向量 y&#xff08;1;;;...;&#xff09;,则n个样本的集合为&a…

vue项目中使用jsonp跨域请求百度联想接口

一. 内容简介 vue项目中使用jsonp跨域请求百度联想接口 二. 软件环境 2.1 Visual Studio Code 1.75.0 2.2 chrome浏览器 2.3 node v18.14.0 三.主要流程 3.1 代码 核心代码 // 这个是请求函数doLeno() {// 挂载回调函数&#xff0c;不挂载&#xff0c;会报不存在window…

短视频账号矩阵系统源码/saas独立源头技术开发

一、批量剪辑&#xff08;采用php语言&#xff0c;数学建模&#xff09; 短视频合成批量剪辑的算法主要有以下几种&#xff1a; 1. 帧间插值算法&#xff1a;通过对多个视频的帧进行插帧处理&#xff0c;从而合成一段平滑的短视频。 2. 特征提取算法&#xff1a;提取多个视频中…

viple模拟器使用(四):unity模拟器中实现沿右墙迷宫算法

沿右墙迷宫算法 引导 线控模拟可以使得通过用户手动操作&#xff0c;实现机器人在模拟环境下在迷宫中行走&#xff08;即&#xff1a;运动&#xff09;&#xff0c;算法可以使得机器人按照一定的策略自动行走&#xff0c;沿右墙迷宫算法就是其中的一种策略。 目的 运行程序后&…

MFC容器中使用标准库容器,内存违规

问题描述 CArray中元素不管是直接或间接使用标准库容器&#xff0c;会引发内存违规。与CArray内部实现有关。测试代码如下&#xff1a; struct tagData {std::vector<int> m_Values; }; CArray<tagData, tagData> mIntVecArray; {tagData mData;mData.m_Values.p…

【08】Python运算符

文章目录 1.算术运算符2.赋值运算符3.条件运算符4.逻辑运算符5.比较运算符6.运算符的优先级本期博客中,我们将学习python中常用的运算符的用法。              1.算术运算符 1.加法运算符(+): a = 10 b = 5 c = a + b print(c

仿制剧情吧网站源码 帝国CMS剧情介绍模板

帝国CMS7.5剧情介绍模板&#xff0c;仿制剧情吧网站的风格。该模板并非用于直接播放电影&#xff0c;而是用文字描述剧情&#xff0c;同时包含手机版。本站免费分享供站长学习研究使用。采用伪静态技术&#xff0c;无需生成HTML。出于美观考虑&#xff0c;自带数据仅供本地环境…

跨越威胁的传说:揭秘Web安全的七大恶魔

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…

OpenCV | 傅里叶变换——低通滤波器与高通滤波器

import cv2 #opencv 读取的格式是BGR import numpy as np import matplotlib.pyplot as plt #Matplotlib是RGB %matplotlib inline def cv_show(img,name):cv2.imshow(name,img)cv2.waitKey()cv2.destroyAllWindows() 傅里叶变换 傅里叶变换的作用 高频&#xff1a;变化剧烈…

什么是计算机病毒?

计算机病毒 1. 定义2. 计算机病毒的特点3. 计算机病毒的常见类型和攻击方式4. 如何防御计算机病毒 1. 定义 计算机病毒是计算机程序编制者在计算机程序中插入的破坏计算机功能或者破坏数据&#xff0c;影响计算机使用并且能够自我复制的一组计算机指令或程序代码。因其特点与生…

算法基础之食物链

食物链 核心思想&#xff1a;带权并查集 用距根节点和距离表示与根节点的关系 求距离 #include<iostream>using namespace std;const int N50010;int n,m;int p[N],d[N];//找到祖宗节点(路径压缩) 并求出对应距离int find(int x){if(p[x]!x){int up[x]; //保存旧父节点…

ACM程序设计课内实验(1)数学问题

1.The Hardest Problem Ever Description Julius Caesar生活在一个危险而又充斥着阴谋的时代。Caesar面对的最难的情况关系着他的存亡。为了让自己生存&#xff0c;他决心去创造第一种加密方法之一。这个加密方法听起来是这样的令人难以置信&#xff0c;没有一个人可以指出它&a…

【数学】旋转矩阵

参考链接 OpenGL from OpenGL.GL import * from OpenGL.GLUT import * from math import * import numpy as np def draw_axes():glClear(GL_COLOR_BUFFER_BIT)# 绘制坐标轴glColor3f(1.0, 1.0, 1.0) # 设置坐标轴颜色为白色glBegin(GL_LINES)glVertex2f(-1.0, 0.0) # x 轴g…

【Vue】绝了!还有不懂生命周期的?

生命周期 Vue.js 组件生命周期&#xff1a; 生命周期函数&#xff08;钩子&#xff09;就是给我们提供了一些特定的时刻&#xff0c;让我们可以在这个周期段内加入自己的代码&#xff0c;做一些需要的事情; 生命周期钩子中的this指向是VM 或 组件实例对象 在JS 中&#xff0c;…

ArrayList与顺序表的简单理解

前言----list 在集合框架中&#xff0c;List是一个接口&#xff0c;继承自Collection。Collection也是一个接口&#xff0c;该接口中规范了后序容器中常用的一些方法&#xff0c;具体如下所示&#xff1a; Iterable也是一个接口&#xff0c;表示实现该接口的类是可以逐个元素进…

Redis队列stream,Redis多线程详解

Redis 目前最新版本为 Redis-6.2.6 &#xff0c;会以 CentOS7 下 Redis-6.2.4 版本进行讲解。 下载地址&#xff1a; https://redis.io/download 安装运行 Redis 很简单&#xff0c;在 Linux 下执行上面的 4 条命令即可 &#xff0c;同时前面的 课程已经有完整的视…

JAVA基础进阶(十三)

一、反射概述 反射是指对于任何一个Class类&#xff0c;在"运行的时候"都可以直接得到这个类的全部成分。 在运行时,可以直接得到这个类的构造器对象&#xff1a;Constructor 在运行时,可以直接得到这个类的成员变量对象&#xff1a;Field 在运行时,可以直接得到…

基于若依的ruoyi-nbcio流程管理系统增加流程节点配置(三)

更多ruoyi-nbcio功能请看演示系统 gitee源代码地址 前后端代码&#xff1a; https://gitee.com/nbacheng/ruoyi-nbcio 演示地址&#xff1a;RuoYi-Nbcio后台管理系统 这一节主要是对每个流程节点的字段规则设置与操作规则设置&#xff0c;目前也是只针对自定义业务表单。 1、…

JS 绘制半径不一致的环形图进度条

HTML部分: <canvas id"mycanvas" width"100" height"100"></canvas>JS部分&#xff1a; const option {element: "mycanvas", // 元素count: 26, // 高亮数据totalCount: 129, // 总数据progressColor: #3266FB, // 进…