深度学习之循环神经网络

news2024/12/29 10:18:09

视频链接:6 循环神经网络_哔哩哔哩_bilibili

给神经网络增加记忆能力

对全连接层而言,输入输出的维数固定,因此无法处理序列信息

对卷积层而言,因为卷积核的参数是共享的,所以卷积操作与序列的长度无关。但是因为卷积层的后面往往会跟着一些全连接层,从而导致卷积层的输出不能任意改变

这是一个有限状态自动机:遇到不同的输入会跳到另一个状态上去

从这不难看出,当前结果的输出不仅依赖于当前时刻的输入,还依赖于上一时刻所处的状态

这是一个图灵机:一种抽象的数学模型,可以用来模拟任何可计算问题

输出不单单依靠输入,同时也与控制器的行为、纸带上存下来的信息等有关,比起有限状态自动机更加复杂

对于有限状态机,我们可以改造前馈网络实现。但是对于更加复杂的图灵机就不能仅依靠改造前馈网络实现,而是需要引入记忆能力

当前的输入经过z延时单元就得到了上一时刻的信息

第一个隐藏层中的t-2是由输入层中的t-2与t-3得到的,t-1是由t-1、t-2、t-3得到的,t同理

自回归模型:w0是偏置,wk是权重,当前时刻的yt由前k个时刻的yt-k加权得到

非线性自回归模型:自回归模型没有外部输入,只是y自己预测自己。因此非线性自回归模型引入了非线性函数,x是输入,y是输出,做到了通过时间序列的输入与时间序列的输出一起预测

循环神经网络

通过上一时刻的状态与当前时刻的输入计算当前时刻的状态

Q:循环神经网络与时延神经网络和自回归模型在记忆方式上的差异?

A:循环神经网络(RNN)具有短期记忆能力,可以通过递归的方式对序列数据中的依赖关系进行建模。RNN 的记忆能力来源于网络中的递归结构,它能够记住最近几个时间点的输入信息。然而,随着时间的推移,RNN 的记忆能力会逐渐减弱。
时延神经网络(DTNN)具有长期记忆能力,它通过在时间轴上增加延迟连接来实现对长期依赖关系的建模。DTNN 可以在一定程度上克服 RNN 记忆能力有限的问题,但由于其结构复杂,训练和计算成本较高。
自回归模型(AR)是一种基于 AR 过程的线性模型,它通过自回归系数矩阵来描述过去时刻观测值之间的依赖关系。AR 模型可以看作是一种特殊的 DTNN,其记忆能力取决于自回归系数矩阵的规模。


RNN在时间维度上是很深的网络,但是在非时间维度上却是很浅的网络。因为在时间维度上过深,所以需要考虑梯度消失的问题;因为在非时间维度上过浅,所以需要考虑增加模型的复杂度

如果我们认为前馈神经网络可以模拟任何函数的话,那么循环神经网络就可以模拟任何程序

应用到机器学习

序列到类别

两种常见的方法:

情感分类

因为文本是一个变长的序列,把每个字看成不同时刻的输入(一个词向量),所以可以使用RNN

把不同字的状态拼到一起送到分类器中得到不同的结果

同步的序列到序列模式

输入一个序列,输出一个序列,且输入输出之间有对应关系

中文分词

把一句话以词为单位分隔开

示例中的这句话分词应为:他说的,确实,在理

但是在中文中,的确是一个词,实在是一个词,词语分隔存在歧义性

在机器学习中我们把这个任务变成一个序列标注的任务,S表示单个词语,B表示一个词语的开始,E表示一个词语的结束

在RNN中我们直接把词向量输入RNN得到结果就行了

信息抽取

CRF是条件随机场

抽取小米——品牌,雷军——人名,2015年——时间等信息

语音识别

异步的序列到序列模式

左边输入x得到状态,可以看作是编码器encoder

EOS表示上一个序列的结束

右边的状态是通过上一时刻的状态与上一时刻的输出得到的,没有输入x,可以看作是解码器decoder

右边y影响h,是自回归的方法,h影响h是RNN的方法

机器翻译

参数学习与长程依赖问题

随时间反向传播

对误差在时间维度上求和就得到了总误差,因此反向传播时也可分为不同时刻的反向传播结果U的结果求和

Lt对U求偏导,就是第t时刻的loss对(第k时刻的zk的导数)*(上一时刻隐藏状态的转置)求和

按照链式法则展开为上图所示

长程依赖问题

将链式法则求出的式子继续展开得到(t-k个激活函数的导数的对角矩阵乘U的转置)再乘Lt对zt的偏导

由于f'(zτ)是一个有界函数,U是共享的参数,所以把他们近似看作γ

因此δt,k近似等于γ^t-kδt,t,当γ>1时,若t时刻距离k时刻很长,则会梯度爆炸,反之则会梯度消失,所以实际上只能学到短周期的时间依赖关系

如何解决长程依赖问题

我们希望γ=1,首先把f的非线性f去掉,也就是让ht=Uht-1+Wxt+b,这样使得f’为1。接下来把U变成1也就是单位矩阵,因此ht=ht-1+Wxt+b,此时的γ=1

如图所示,激活函数g是对Wxt+b引入非线性,但是由于ht-1与ht之间变成了线性关系,导致模型能力变差

进一步改进,后面的g(xt,ht-1;θ)其实就是原来的f(Uht-1+Wxt+b),这样改进既保留了非线性,又解决了梯度的问题

当激活函数g选取sigmoid、relu等一直为正的激活函数,加上ht-1是一个累计的状态(不断增大)

例如当激活函数为sigmoid时,由于h不断累计,导致g(xt,ht-1;θ)趋近0或1而出现梯度消失,从而导致难以向网络增加新的信息。因此我们可以在ht-1中选择性地丢弃一些信息,接下来会给大家介绍两种基于门控的方法

残差:如果把g(xt,ht-1;θ)中的xt去掉,得到ht = g(ht-1;θ),这个式子与残差网络是十分相似的,都解决了梯度消失的问题

GRU与LSTM

GRU

zt是一个与h维度相同的向量,每一维都在0~1之间,用sigmoid激活函数

g用得到是tanh激活函数,将0~1变成-1~1,且梯度更大一些

当zt接近1时,ht的信息更多来自于ht-1;当zt接近0,ht的信息更多来自于xt

若想要ht的信息只来源于xt,则可以加一个rt在ht-1之前

LSTM

引入了内部记忆单元c,通过c进行记忆线性的传递,把h释放出来更好地去做非线性

i是input gate,决定加入多少新信息

f是forget gate,决定遗忘多少旧信息

o是output gate,决定输出多少信息

深层循环神经网络

虽然循环神经网络在时间维度上可以认为是一个非常深的网络,但在非线性维度上是非常浅的,我们希望把它加深,看看模型能力有没有提升

堆叠循环神经网络

时间维度上是对齐的

变式

可以使某个状态来自于下一层所有时刻的状态

也可以使某个状态来自于上一时刻的所有层

双向循环神经网络

对输入的时序数据,既可以从左往右建模,也可以从右往左建模,好处是得到了双向的信息与趋势,模型效果更好

Q:如何增加循环神经网络的并行能力?

A:

双向循环神经网络(BRNN):BRNN 通过在输入层引入未来信息,使得网络可以同时利用过去和未来的数据。这种结构在处理自然语言处理、语音识别等任务时具有较好的性能。BRNN 可以在一定程度上提高并行计算能力,但仍然受到循环连接的限制。
增加网络层数:通过增加网络层数,可以降低梯度消失和梯度爆炸的问题,提高模型性能。同时,深度循环神经网络具有较强的并行计算能力,因为大部分计算可以在各层之间并行进行。
跳步连接(skip connection):在循环神经网络中引入跳步连接,可以使得网络在训练过程中更快地收敛,并提高模型的并行计算能力。跳步连接使得网络可以在不同层之间直接传递信息,减少了梯度消失问题,同时提高了并行处理能力。
分离式循环神经网络(Separable Recurrent Neural Network,SRNN):SRNN 将循环神经网络的内部循环结构分离成两个独立的子网络,一个负责处理过去信息,另一个负责处理未来信息。这种结构在训练和预测过程中可以实现部分并行计算,提高网络的性能。
准并行循环神经网络(Quasi-Parallel Recurrent Neural Network,QPRNN):QPRNN 采用一种准并行的结构,将循环神经网络中的递归关系用多个并行子网络表示。这种结构可以在一定程度上提高并行计算能力,但仍然受到梯度消失和梯度爆炸问题的限制。
内存增强神经网络(Memory-Augmented Neural Network,MANN):MANN 在循环神经网络中引入了一种新型内存模块,用于存储和检索相关信息。这种结构可以提高网络的并行计算能力,同时增强了对长序列数据的处理能力。
转换器架构(Transformer):转换器架构是一种基于自注意力机制的深度神经网络,其在自然语言处理等领域取得了显著的成果。虽然转换器并非典型的循环神经网络,但其在并行计算方面具有很强的能力。通过将循环神经网络与转换器相结合,可以进一步提高网络的并行能力。

循环神经网络应用

扩展到图结构

树结构

递归神经网络把循环神经网络从序列结构扩展到树结构

应用到自然能语言上:

先将red与bike组合,再与a组合

图结构

在实际应用中,很多数据是图结构的,比如知识图谱、社交网络、分子网络等。而前馈网络和循环网络很难处理图结构的数据

v是结点向量、e是边向量、u是全局向量

图的更新步骤为:

(1)更新边:通过边所连的两点与u更新

(2)更新点:通过所有指向该点的边与u更新

(3)更新u

mt(v)是指v收到的信息,ht-1是上一时刻的状态,u是v的所有邻居结点

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1258676.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

可以媲美MidJourney,但是开源和免费的超强AI绘画-fooocus

现在的AI技术很火,这一新兴领域的发展给艺术创作带来了全新的可能性,AI绘画的应用也十分的广泛。我自己见到的就有运用在模特穿衣服身上的,化妆品广告图生成的等等,比如MidJourney 和stable diffusion 等 AI绘画程序已经很成熟了&…

011 OpenCV warpAffine

目录 一、环境 二、warpAffine原理 三、完整代码 一、环境 本文使用环境为: Windows10Python 3.9.17opencv-python 4.8.0.74 二、warpAffine原理 warpAffine是OpenCV库中的一个函数,它用于执行二维仿射变换。这个函数接受一个输入图像和变换矩阵&…

【Linux 静态IP配置】

静态IP配置 1.NAT模式设置2.设置静态ip3.重启网络4.查看ip 1.NAT模式设置 首先设置虚拟机中NAT模式的选项,打开VMware,点击“编辑”下的“虚拟网络编辑器”,设置NAT参数 注意: VMware Network Adapter VMnet8保证是启用状态 …

针对近期大面积出现的小程序新用户登录不正常处理办法

原因是微信小程序需要更新协议规则 操作方法如下: 提交之后等待通过

麒麟信安联合牵头 | 国家关键领域信创行业产教融合共同体成立大会暨欧拉人才发展论坛盛大召开

11月24日,国家关键领域信创行业产教融合共同体成立大会暨欧拉人才发展论坛在长沙职业技术学院盛大召开。大会由湖南省教育厅、湖南省工业和信息化厅、长沙市人民政府指导,麒麟信安、长沙理工大学、长沙职业技术学院三家牵头单位主办,湖南欧拉…

01-Java集合之单向队列,如Collection接口,List接口,Set接口,Queue接口及其实现类的底层结构和特点

单列集合 特点 单列集合分为三大类 List类型的集合: 有序可重复 , 这种类型的集合的元素都有下标Set类型的集合: 无序不可重复 , 这种类型的集合的元素都没有下标Queue类型的集合: 先进先出(FIFO) , 只能一端进并且在另一端出的队列 Collection中能存放的元素: 没有使用泛型…

国家万亿资金助力城市生命线城市内涝积水监测系统

自2023年年初以来,我国多个地区遭遇了洪涝、干旱、台风、风雹等灾害的侵袭,部分地区灾情严重,经济损失较大。为应对灾后恢复重建工作的艰巨任务,本次国债将主要投向灾后恢复重建以及提升防灾减灾救灾能力。其中,将全面…

统信UOS安装Virtualbox虚拟机和Windows10系统

在UOS统信系统中部署Windows环境我可以通过安装虚拟机来实现,这也可以解决软件不适配带来的一些问题,当然对硬件配置也有一定的要求,不建议性能过低的设备使用。 接下来请按照以下步骤进行安装Virtualbox及Win10虚拟系统的设置。 1、安装Vi…

docker容器的生命周期管理常用命令

容器的生命周期管理命令 docker create :创建一个新的容器但不启动它 docker create nginx docker run :创建一个新的容器并运行一个命令 常用选项: 常用选项1. --add-host:容器中hosts文件添加 host:ip 映射记录 2. -a, --attach&#…

【论文阅读】ActiveNeRF:通过不确定性估计候选新视图

【论文阅读】ActiveNeRF: Learning where to See with Uncertainty Estimation Abstract1 Introduction3 Background4 NeRF with Uncertainty Estimation5 ActiveNeRF5.1 Prior and Posterior Distribution5.2 Acquisition Function5.3 Optimization and Inference 6 Experimen…

Redis面试题:Redis是单线程的,但是为什么还那么快?I/O多路复用模型

目录 面试官:Redis是单线程的,但是为什么还那么快? 面试官:能解释一下I/O多路复用模型? 面试官:Redis是单线程的,但是为什么还那么快? 候选人: 嗯,这个有几…

Robot Framework自动化测试(四)--- 分层思想

📢专注于分享软件测试干货内容,欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!📢交流讨论:欢迎加入我们一起学习!📢资源分享:耗时200小时精选的「软件测试」资…

【广州华锐互动】节约用水VR互动教育:身临其境体验水资源的珍贵!

随着技术的不断发展,虚拟现实(VR)技术在许多领域得到了广泛应用。在节水宣传教育方面,VR技术也展现出了其独特的优势。与传统宣传教育方式相比,节约用水VR互动教育具有更加沉浸式、互动性和实践性的特点,能…

Java计算二叉树从根节点到叶子结点的最大路径和

要求从根节点到叶子结点的最大路径和,可以通过递归遍历二叉树来实现。对于二叉树中的每个节点,我们都可以考虑包含该节点的最大路径和。在递归的过程中,我们需要不断更新全局最大路径和。 具体的思路如下: 递归函数设计&#xff1…

【Python】python包相对导入问题及解决方案

报错信息 ImportError: attempted relative import with no known parent package 问题描述 在package目录下有a1.py文件和subpackage1目录。在subpackage1目录下有b1.py文件。现在b1.py文件中有这样一行代码:from …a1 import A1。在subpackage1目录下运行pytho…

Windows公网远程连接MongoDB数据库【无公网IP】

目录 前言 1. 安装数据库 2. 内网穿透 2.1 安装cpolar内网穿透 2.2 创建隧道映射 2.3 测试随机公网地址远程连接 3. 配置固定TCP端口地址 3.1 保留一个固定的公网TCP端口地址 3.2 配置固定公网TCP端口地址 3.3 测试固定地址公网远程访问 总结 前言 MongoDB是一个基…

案例033:基于微信小程序的商品展示系统设计与实现

文末获取源码 开发语言:Java 框架:SSM JDK版本:JDK1.8 数据库:mysql 5.7 开发软件:eclipse/myeclipse/idea Maven包:Maven3.5.4 小程序框架:uniapp 小程序开发软件:HBuilder X 小程序…

paddleocr笔记

PP-OCRv1 PP-OCR中,对于一张图像,需要完成以下3个步骤提取其中的文字信息: 使用文本检测方法,获取文本区域多边形信息(PP-OCR中文本检测使用的是DBNet,因此获取的是四点信息)。对上述文本多边形…

SpringBoot参数校验@Validated和@Valid的使用

1、Validated和Valid区别 Validated:可以用在类、方法和方法参数上。但是不能用在成员属性(字段)上Valid:可以用在方法、构造函数、方法参数和成员属性(字段)上 2、引入依赖 Spring Boot 2.3 1 之前&…

【Linux系统编程】操作系统详解(什么是操作系统?为什么会存在操作系统?设计操作系统的目的是什么?)

目录 一、前言 二、 什么是操作系统 💦操作系统的引入 💦操作系统的概念理解 💦操作系统设计的目的与定位 💦总结 二、操作系统之上之下分别有什么 三、深度理解操作系统的“管理” 💦场景理解 💦操…