深入讲解Linux中断子系统--Workqueue

news2025/1/12 0:50:48

说明:

  1. Kernel版本:4.14
  2. ARM64处理器,Contex-A53,双核
  3. 使用工具:Source Insight 3.5, Visio

1. 概述

  • Workqueue工作队列是利用内核线程来异步执行工作任务的通用机制;
  • Workqueue工作队列可以用作中断处理的Bottom-half机制,利用进程上下文来执行中断处理中耗时的任务,因此它允许睡眠,而Softirq和Tasklet在处理任务时不能睡眠;

来一张概述图:

  • 在中断处理过程中,或者其他子系统中,调用workqueue的调度或入队接口后,通过建立好的链接关系图逐级找到合适的worker,最终完成工作任务的执行;

2. 数据结构

2.1 总览

此处应有图:

  • 先看看关键的数据结构:
  • work_struct:工作队列调度的最小单位,work item;
  • workqueue_struct:工作队列,work item都挂入到工作队列中;
  • worker:work item的处理者,每个worker对应一个内核线程;
  • worker_pool:worker池(内核线程池),是一个共享资源池,提供不同的worker来对work item进行处理;
  • pool_workqueue:充当桥梁纽带的作用,用于连接workqueue和worker_pool,建立链接关系;

下边看看细节吧:

   资料直通车:Linux内核源码技术学习路线+视频教程内核源码

学习直通车:Linux内核源码内存调优文件系统进程管理设备驱动/网络协议栈

2.2 work

struct work_struct用来描述work,初始化一个work并添加到工作队列后,将会将其传递到合适的内核线程来进行处理,它是用于调度的最小单位。

关键字段描述如下:

struct work_struct {
	atomic_long_t data;     //低比特存放状态位,高比特存放worker_pool的ID或者pool_workqueue的指针
	struct list_head entry; //用于添加到其他队列上
	work_func_t func;       //工作任务的处理函数,在内核线程中回调
#ifdef CONFIG_LOCKDEP
	struct lockdep_map lockdep_map;
#endif
};

图片说明下data字段:

2.3 workqueue

  • 内核中工作队列分为两种:
  • bound:绑定处理器的工作队列,每个worker创建的内核线程绑定到特定的CPU上运行;
  • unbound:不绑定处理器的工作队列,创建的时候需要指定WQ_UNBOUND标志,内核线程可以在处理器间迁移;
  • 内核默认创建了一些工作队列(用户也可以创建):
  • system_mq:如果work item执行时间较短,使用本队列,调用schedule[_delayed]_work_on接口就是添加到本队列中;
  • system_highpri_mq:高优先级工作队列,以nice值-20来运行;
  • system_long_wq:如果work item执行时间较长,使用本队列;
  • system_unbound_wq:该工作队列的内核线程不绑定到特定的处理器上;
  • system_freezable_wq:该工作队列用于在Suspend时可冻结的work item;
  • system_power_efficient_wq:该工作队列用于节能目的而选择牺牲性能的work item;
  • system_freezable_power_efficient_wq:该工作队列用于节能或Suspend时可冻结目的的work item;

struct workqueue_struct关键字段介绍如下:

struct workqueue_struct {
	struct list_head	pwqs;		/* WR: all pwqs of this wq */   //所有的pool_workqueue都添加到本链表中
	struct list_head	list;		/* PR: list of all workqueues */    //用于将工作队列添加到全局链表workqueues中


	struct list_head	maydays;	/* MD: pwqs requesting rescue */    //rescue状态下的pool_workqueue添加到本链表中
	struct worker		*rescuer;	/* I: rescue worker */  //rescuer内核线程,用于处理内存紧张时创建工作线程失败的情况


	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */


	char			name[WQ_NAME_LEN]; /* I: workqueue name */


	/* hot fields used during command issue, aligned to cacheline */
	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */     //Per-CPU都创建pool_workqueue
	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */    //Per-Node创建pool_workqueue
    ...
};

2.4 worker

  • 每个worker对应一个内核线程,用于对work item的处理;
  • worker根据工作状态,可以添加到worker_pool的空闲链表或忙碌列表中;
  • worker处于空闲状态时并接收到工作处理请求,将唤醒内核线程来处理;
  • 内核线程是在每个worker_pool中由一个初始的空闲工作线程创建的,并根据需要动态创建和销毁;

关键字段描述如下:

struct worker {
	/* on idle list while idle, on busy hash table while busy */
	union {
		struct list_head	entry;	/* L: while idle */     //用于添加到worker_pool的空闲链表中
		struct hlist_node	hentry;	/* L: while busy */ //用于添加到worker_pool的忙碌列表中
	};


	struct work_struct	*current_work;	/* L: work being processed */   //当前正在处理的work
	work_func_t		current_func;	/* L: current_work's fn */                  //当前正在执行的work回调函数
	struct pool_workqueue	*current_pwq; /* L: current_work's pwq */   //指向当前work所属的pool_workqueue


	struct list_head	scheduled;	/* L: scheduled works */    //所有被调度执行的work都将添加到该链表中


	/* 64 bytes boundary on 64bit, 32 on 32bit */


	struct task_struct	*task;		/* I: worker task */    //指向内核线程
	struct worker_pool	*pool;		/* I: the associated pool */    //该worker所属的worker_pool
						/* L: for rescuers */
	struct list_head	node;		/* A: anchored at pool->workers */  //添加到worker_pool->workers链表中
						/* A: runs through worker->node */
    ...
};

2.5 worker_pool

  • worker_pool是一个资源池,管理多个worker,也就是管理多个内核线程;
  • 针对绑定类型的工作队列,worker_pool是Per-CPU创建,每个CPU都有两个worker_pool,对应不同的优先级,nice值分别为0和-20;
  • 针对非绑定类型的工作队列,worker_pool创建后会添加到unbound_pool_hash哈希表中;
  • worker_pool管理一个空闲链表和一个忙碌列表,其中忙碌列表由哈希管理;

关键字段描述如下:

struct worker_pool {
	spinlock_t		lock;		/* the pool lock */
	int			cpu;		/* I: the associated cpu */     //绑定到CPU的workqueue,代表CPU ID
	int			node;		/* I: the associated node ID */ //非绑定类型的workqueue,代表内存Node ID
	int			id;		/* I: pool ID */
	unsigned int		flags;		/* X: flags */


	unsigned long		watchdog_ts;	/* L: watchdog timestamp */


	struct list_head	worklist;	/* L: list of pending works */  //pending状态的work添加到本链表
	int			nr_workers;	/* L: total number of workers */    //worker的数量


	/* nr_idle includes the ones off idle_list for rebinding */
	int			nr_idle;	/* L: currently idle ones */


	struct list_head	idle_list;	/* X: list of idle workers */   //处于IDLE状态的worker添加到本链表
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */


	/* a workers is either on busy_hash or idle_list, or the manager */
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);   //工作状态的worker添加到本哈希表中
						/* L: hash of busy workers */


	/* see manage_workers() for details on the two manager mutexes */
	struct worker		*manager;	/* L: purely informational */
	struct mutex		attach_mutex;	/* attach/detach exclusion */
	struct list_head	workers;	/* A: attached workers */   //worker_pool管理的worker添加到本链表中
	struct completion	*detach_completion; /* all workers detached */


	struct ida		worker_ida;	/* worker IDs for task name */


	struct workqueue_attrs	*attrs;		/* I: worker attributes */
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */    //用于添加到unbound_pool_hash中
    ...
} ____cacheline_aligned_in_smp;

2.6 pool_workqueue

  • pool_workqueue充当纽带的作用,用于将workqueue和worker_pool关联起来;

关键字段描述如下:

struct pool_workqueue {
	struct worker_pool	*pool;		/* I: the associated pool */    //指向worker_pool
	struct workqueue_struct *wq;		/* I: the owning workqueue */   //指向所属的workqueue


	int			nr_active;	/* L: nr of active works */     //活跃的work数量
	int			max_active;	/* L: max active works */   //活跃的最大work数量
	struct list_head	delayed_works;	/* L: delayed works */      //延迟执行的work挂入本链表
	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */      //用于添加到workqueue链表中
	struct list_head	mayday_node;	/* MD: node on wq->maydays */   //用于添加到workqueue链表中
    ...
} __aligned(1 << WORK_STRUCT_FLAG_BITS);

2.7 小结

再来张图,首尾呼应一下:

3. 流程分析

3.1 workqueue子系统初始化

  • workqueue子系统的初始化分成两步来完成的:workqueue_init_early和workqueue_init。

3.1.1 workqueue_init_early

  • workqueue子系统早期初始化函数完成的主要工作包括:
  • 创建pool_workqueue的SLAB缓存,用于动态分配struct pool_workqueue结构;
  • 为每个CPU都分配两个worker_pool,其中的nice值分别为0和HIGHPRI_NICE_LEVEL,并且为每个worker_pool从worker_pool_idr中分配一个ID号;
  • 为unbound工作队列创建默认属性,struct workqueue_attrs属性,主要描述内核线程的nice值,以及cpumask值,分别针对优先级以及允许在哪些CPU上执行;
  • 为系统默认创建几个工作队列,这几个工作队列的描述在上文的数据结构部分提及过,不再赘述;

从图中可以看出创建工作队列的接口为:alloc_workqueue,如下图:

  • alloc_workqueue完成的主要工作包括:
  • 首先当然是要分配一个struct workqueue_struct的数据结构,并且对该结构中的字段进行初始化操作;
  • 前文提到过workqueue最终需要和worker_pool关联起来,而这个纽带就是pool_workqueue,alloc_and_link_pwqs函数就是完成这个功能:1)如果工作队列是绑定到CPU上的,则为每个CPU都分配pool_workqueue并且初始化,通过link_pwq将工作队列与pool_workqueue建立连接;2)如果工作队列不绑定到CPU上,则按内存节点(NUMA,参考之前内存管理的文章)来分配pool_workqueue,调用get_unbound_pool来实现,它会根据wq属性先去查找,如果没有找到相同的就创建一个新的pool_workqueue,并且添加到unbound_pool_hash哈希表中,最后也会调用link_pwq来建立连接;
  • 创建工作队列时,如果设置了WQ_MEM_RECLAIM标志,则会新建rescuer worker,对应rescuer_thread内核线程。当内存紧张时,新创建worker可能会失败,这时候由rescuer来处理这种情况;
  • 最终将新建好的工作队列添加到全局链表workqueues中;

3.1.2 workqueue_init

workqueue子系统第二阶段的初始化:

  • 主要完成的工作是给之前创建好的worker_pool,添加一个初始的worker;
  • create_worker函数中,创建的内核线程名字为kworker/XX:YY或者kworker/uXX:YY,其中XX表示worker_pool的编号,YY表示worker的编号,u表示unbound;

workqueue子系统初始化完成后,基本就已经将数据结构的关联建立好了,当有work来进行调度的时候,就可以进行处理了。

3.2 work调度

3.2.1 schedule_work

以schedule_work接口为例进行分析:

  • schedule_work默认是将work添加到系统的system_work工作队列中;
  • queue_work_on接口中的操作判断要添加work的标志位,如果已经置位了WORK_STRUCT_PENDING_BIT,表明已经添加到了队列中等待执行了,否则,需要调用__queue_work来进行添加。注意了,这个操作是在关中断的情况下进行的,因为工作队列使用WORK_STRUCT_PENDING_BIT位来同步work的插入和删除操作,设置了这个比特后,然后才能执行work,这个过程可能被中断或抢占打断;
  • workqueue的标志位设置了__WQ_DRAINING,表明工作队列正在销毁,所有的work都要处理完,此时不允许再将work添加到队列中,有一种特殊情况:销毁过程中,执行work时又触发了新的work,也就是所谓的chained work;
  • 判断workqueue的类型,如果是bound类型,根据CPU来获取pool_workqueue,如果是unbound类型,通过node号来获取pool_workqueue;
  • get_work_pool获取上一次执行work的worker_pool,如果本次执行的worker_pool与上次执行的worker_pool不一致,且通过find_worker_executing_work判断work正在某个worker_pool中的worker中执行,考虑到缓存热度,放到该worker执行是更合理的选择,进而根据该worker获取到pool_workqueue;
  • 判断pool_workqueue活跃的work数量,少于最大限值则将work加入到pool->worklist中,否则加入到pwq->delayed_works链表中,如果__need_more_worker判断没有worker在执行,则唤醒worker内核线程执行;
  • 总结:
  • schedule_work完成的工作是将work添加到对应的链表中,而在添加的过程中,首先是需要确定pool_workqueue;
  • pool_workqueue对应一个worker_pool,因此确定了pool_workqueue也就确定了worker_pool,进而可以将work添加到工作链表中;
  • pool_workqueue的确定分为三种情况:1)bound类型的工作队列,直接根据CPU号获取;2)unbound类型的工作队列,根据node号获取,针对unbound类型工作队列,pool_workqueue的释放是异步执行的,需要判断refcnt的计数值,因此在获取pool_workqueue时可能要多次retry;3)根据缓存热度,优先选择正在被执行的worker_pool;

3.2.2 worker_thread

work添加到工作队列后,最终的执行在worker_thread函数中:

  • 在创建worker时,创建内核线程,执行函数为worker_thread;
  • worker_thread在开始执行时,设置标志位PF_WQ_WORKER,调度器在进行调度处理时会对task进行判断,针对workerqueue worker有特殊处理;
  • worker对应的内核线程,在没有处理work的时候是睡眠状态,当被唤醒的时候,跳转到woke_up开始执行;
  • woke_up之后,如果此时worker是需要销毁的,那就进行清理工作并返回。否则,离开IDLE状态,并进入recheck模块执行;
  • recheck部分,首先判断是否需要更多的worker来处理,如果没有任务处理,跳转到sleep地方进行睡眠。有任务需要处理时,会判断是否有空闲内核线程以及是否需要动态创建,再清除掉worker的标志位,然后遍历工作链表,对链表中的每个节点调用process_one_worker来处理;
  • sleep部分比较好理解,没有任务处理时,worker进入空闲状态,并将当前的内核线程设置成睡眠状态,让出CPU;
  • 总结:
  • 管理worker_pool的内核线程池时,如果有PENDING状态的work,并且发现没有正在运行的工作线程(worker_pool->nr_running == 0),唤醒空闲状态的内核线程,或者动态创建内核线程;
  • 如果work已经在同一个worker_pool的其他worker中执行,不再对该work进行处理;

work的执行函数为process_one_worker:

  • work可能在同一个CPU上不同的worker中运行,直接退出;
  • 调用worker->current_func(),完成最终work的回调函数执行;

3.3 worker动态管理

3.3.1 worker状态机变换

  • worker_pool通过nr_running字段来在不同的状态机之间进行切换;
  • worker_pool中有work需要处理时,需要至少保证有一个运行状态的worker,当nr_running大于1时,将多余的worker进入IDLE状态,没有work需要处理时,所有的worker都会进入IDLE状态;
  • 执行work时,如果回调函数阻塞运行,那么会让worker进入睡眠状态,此时调度器会进行判断是否需要唤醒另一个worker;
  • IDLE状态的worker都存放在idle_list链表中,如果空闲时间超过了300秒,则会将其进行销毁;
  1. Running->Suspend

  • 当worker进入睡眠状态时,如果该worker_pool没有其他的worker处于运行状态,那么是需要唤醒一个空闲的worker来维持并发处理的能力;
  1. Suspend->Running

  • 睡眠状态可以通过wake_up_worker来进行唤醒处理,最终判断如果该worker不在运行状态,则增加worker_pool的nr_running值;

3.3.2 worker的动态添加和删除

  1. 动态删除

  • worker_pool初始化时,注册了timer的回调函数,用于定时对空闲链表上的worker进行处理,如果worker太多,且空闲时间太长,超过了5分钟,那么就直接进行销毁处理了;
  1. 动态添加

  • 内核线程执行worker_thread函数时,如果没有空闲的worker,会调用manage_workers接口来创建更多的worker来处理工作;

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/125346.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

以前的互联网时代,其实就是一个以互联网技术为主导的年代

事实上&#xff0c;以往&#xff0c;我们所经历的那个互联网玩家频出的年代&#xff0c;其实就是一个以互联网技术为主导的年代。在那样一个年代里&#xff0c;互联网技术几乎是解决一切痛点和难题的万能解药&#xff0c;几乎是破解一切行业痛点和难题的杀手锏。任何一个行业&a…

使用Python读取网易邮箱大师客户端的所有邮件

文章目录1. 前言2. 效果3. 探究过程3.1. 找到本地存储的数据库3.2. 使用Python读取数据库3.2.1. 代码4. 探究结果4.1. 函数4.1.1. 找到特定邮~箱的最新一条邮件4.1.2. 找到特定邮箱的最新一次验证码4.1.3. 通过命令行调用Python代码找到特定邮箱的最新的验证码1. 前言 现在绝大…

中科大FPGAOL使用方法

1.中科大的FPGA在线平台提供了一个非常好用的功能&#xff0c;将bit文件上传到远程FPGA开发板上加以功能验证&#xff0c;而且可以游客的身份访问。 Login - FPGA Onlinehttp://fpgaol.ustc.edu.cn/ 2.系统采用的硬件平台是赛灵思的Nexys4 DDR开发板(xc7a100t-csg324)&#x…

RocketMQ学习(五):分布式事务

一、分布式事务 事务&#xff08;Transaction&#xff09;&#xff0c;一般是指要做的或所做的事情。在计算机术语中是指访问并可能更新数据库中各种数据项的一个程序执行单元(unit)。事务通常由高级数据库操纵语言或编程语言&#xff08;如SQL&#xff0c;C或Java&#xff09;…

『Java课设』JavaSwing+MySQL实现医院智慧点餐系统

&#x1f468;‍&#x1f393;作者简介&#xff1a;一位喜欢写作&#xff0c;计科专业大三菜鸟 &#x1f3e1;个人主页&#xff1a;starry陆离 如果文章有帮到你的话记得点赞&#x1f44d;收藏&#x1f497;支持一下哦 『Java课设』JavaSwingMySQL实现医院智慧点餐系统1.功能介…

设计模式:责任链模式的应用场景及源码应用

一、概述 责任链模式&#xff08;Chain of Responsibility Pattern&#xff09;是将链中每一个节点看作是一个对象&#xff0c;每个节点处理的请求均不同&#xff0c;且内部自动维护一个下一节点对象。当一个请求从链式的首端发出时&#xff0c;会沿着链的路径依次传递给每一个…

AI代码实时生成工具teleportHQ

来源&#xff1a;投稿 作者&#xff1a;ΔU 编辑&#xff1a;学姐 今天给大家分享一款AI代码实时生成工具teleportHQ&#xff0c;teleportHQ本质上是一个低代码开发平台&#xff0c;但是首次将计算机视觉应用到低代码开发上&#xff0c;teleportHQ允许用户通过熟悉的设计工具界…

JSX的基本使用

JSX的基本使用1.JSX简介1.1 JSX是react的核心内容1.2 createElement的问题1.3 createElement的问题1.4 JSX注意点2 使用prettier插件格式化react代码3 JSX中嵌入JavaScript表达式4 条件渲染5 列表渲染6 样式处理1.JSX简介 JSX是JavaScript XML的简写&#xff0c;表示了在Javas…

Linux 下 rpm管理包

一、 .rpm的文件格式 以.rpm格式发布的软件里面封装的都是经过编译过的二进制形式的软件&#xff0c;可以直接安装。.rpm格式的文件又称为rpm软件包&#xff0c;简称rpm包。 二、 rpm文件名的格式 三、 rpm命令的使用与软件的安装 Linux中安装rpm软件包有3种方法&#xff1…

新手小白入门之泛型

一、背景 JAVA推出泛型以前&#xff0c;程序员可以构建一个元素类型为Object的集合&#xff0c;该集合能够存储任意的数据类型对象&#xff0c;而在使用该集合的过程中&#xff0c;需要程序员明确知道存储每个元素的数据类型&#xff0c;否则很容易引发ClassCastException异常…

嵌入式书籍推荐

现在嵌入式软件工程师的数量需求方面是越来越旺盛&#xff0c;但是在人才供给方面却出现了缺口&#xff0c;个大公司对于嵌入式开发工程师职位出现供不应求的局面&#xff0c;正是有很多人看到这了大好的环境&#xff0c;纷纷选择开始学习嵌入式开发&#xff0c;学习的方式也是…

第十六讲:神州交换机访问控制列表的配置

访问控制列表ACL&#xff08;Access Control Lists&#xff09;数据定义工具&#xff0c;基于用户自行定义的数据的参数区分不同的数据流&#xff0c;是在交换机和路由器上经常采用的一种防火墙技术&#xff0c;它可以对经过网络设备的数据包根据一定规则进行过滤。它有以下一些…

CloudFlare 的路由拦截

因为腾讯需要对网站进行校验。 校验的方法是使用一个 tencent18250331897192314951.txt 文件&#xff0c;在这个文件中放入腾讯指定的内容。 我们使用的是 Discourse 这个社区系统&#xff0c;这个社区系统对这种问题的响应比较头痛。 解决方案 解决方案就是从域名服务商哪…

NX 系统环境 python3.6 部署 PPOCR 报错记录

NX 系统环境 python3.6 部署 PPOCR 报错记录 前言&#xff08;这环境&#xff0c;就硬配&#xff09; 问&#xff1a;为什么要用系统环境&#xff0c;不用 conda&#xff1f;答&#xff1a;因为 conda 的 ARM 端 python 最低只支持 3.7&#xff0c;而 paddlepaddle 提供的 Je…

c#入门-系统特性

特性 特性可以给成员添加元数据。这有两个作用&#xff1a; 这是一个元数据&#xff0c;可以利用反射获取到如果编译器认识这个特性&#xff0c;那么可以与特性进行交互。 第一点涉及到反射的内容&#xff0c;先略过。 而第二点要求的编译器认实这个特性&#xff0c;就仅限于…

在Linux上安装和使用ZFS

真正的文件系统终极者 ZFS 文件系统的英文名称为 ZettabyteFileSystem&#xff0c;也叫动态文件系统&#xff0c;是第一个 128 位文件系统。最初是由 Sun 公司为 Solaris10 操作系统开发的文件系统。作为 OpenSolaris 开源计划的一部分&#xff0c;ZFS 于 2005 年 11 月发布&a…

《MySQL 8从零开始学(视频教学版)》简介

#好书推荐##好书奇遇季#《MySQL 8从零开始学&#xff08;视频教学版&#xff09;》&#xff0c;定价89元&#xff0c;京东当当天猫都有发售。本书面向MySQL 8数据库初学者&#xff0c;是MySQL数据库畅销入门书。 配套资源 本书配套400个实例和14个综合案例的源码、PPT课件、近2…

/etc/passwd详解

目录 一、统一性和标准化 二、功能和权限 三、内容详解 1、/etc/passwd为按行记录的文本文件&#xff0c;每行记录一个用户的信息 2、每行信息内容 四、参考文献 一、统一性和标准化 各版本的Linux操作系统的/etc/passwd功能和内容格式基本相同。 &#xff08;1&#xf…

Spark环境搭建(Stand alone模式)

Sand alone 架构 Standalone模式是Spark自带的一种集群模式&#xff0c;不同于前面本地模式启动多个进程来模拟集群的环境&#xff0c;Standalone模式是真实地在多个机器之间搭建Spark集群的环境&#xff0c;完全可以利用该模式搭建多机器集群&#xff0c;用于实际的大数据处理…

红黑树的迭代器红黑树与AVL树的比较

&#x1f9f8;&#x1f9f8;&#x1f9f8;各位大佬大家好&#xff0c;我是猪皮兄弟&#x1f9f8;&#x1f9f8;&#x1f9f8; 文章目录一、红黑树泛型实现map&#xff0c;set对多出来的模板参数的解释二、map和set对红黑树迭代器的封装①迭代器operator②operator--三、红黑树…