吴恩达《机器学习》10-1-10-3:决定下一步做什么、评估一个假设、模型选择和交叉验证集

news2024/11/15 7:13:53

一、决定下一步做什么

在机器学习的学习过程中,我们已经接触了许多不同的学习算法,逐渐深入了解了先进的机器学习技术。然而,即使在了解了这些算法的情况下,仍然存在一些差距,有些人能够高效而有力地运用这些算法,而其他人可能对接下来的步骤感到陌生,不清楚如何正确运用这些知识。

在本节课程中,我们将讨论一个关键问题:在机器学习项目中,当我们面临改进算法性能的任务时,我们应该如何决定接下来的工作方向呢?为了解答这一问题,我们将以预测房价的学习例子为例,假设我们已经完成了正则化线性回归,即最小化代价函数 J 的值。

需要改进的情况

假设我们在使用训练好的模型预测新的房屋样本时发现了巨大的误差,接下来应该怎么办呢?以下是一些可能的改进方法:

1. 获取更多的训练实例

通过电话调查或上门调查等方式获取更多的不同房屋出售数据。然而,获得更多的训练数据可能代价较大,而且并不总是有效。

2. 减少特征的数量

精心挑选一小部分特征,避免过拟合。有时候,减少特征数量可以提高算法的泛化能力。

3. 获得更多的特征

有时候增加特征可以改善算法性能,但同样需要谨慎选择。

4. 增加多项式特征

引入特征的高次方,如 x^2、x^3,有时可以更好地拟合数据。

5. 调整正则化程度 𝜆

通过增加或减少正则化参数 𝜆,调整模型的复杂度,以防止过拟合或欠拟合。

避免盲目尝试

在选择这些方法时,我们不应该盲目地随机尝试,而是运用一些机器学习诊断法来帮助判断哪些方法对我们的算法是有效的。这些诊断法是一种测试方法,通过执行这些测试,我们能够深入了解算法的表现,并找到有针对性的改进方法。

在接下来的视频中,我们将学习如何评估机器学习算法的性能,并介绍一些机器学习诊断法,这些方法有助于更深入地了解算法的表现,指导我们选择下一步的改进方法。虽然实施这些诊断法可能需要一些时间,但它们能够帮助我们更有效地改进机器学习系统,节省开发时间。

二、评估一个假设

参数选择的困境

当我们选择学习算法的参数时,通常我们会优化这些参数以使训练误差最小化。然而,仅仅因为一个假设函数具有很小的训练误差,并不能说明它就是一个好的假设函数。我们已经学到了过拟合的例子,即使在训练集上表现很好的假设函数,在新的数据集上可能表现很差。

评估过拟合

为了评估算法是否过拟合,我们采用以下方法:

  1. 分割数据集: 我们将数据分为训练集和测试集,通常采用 70% 的数据作为训练集,剩下的 30% 作为测试集。重要的是,两者都应包含各种类型的数据,并在划分前对数据进行洗牌。

  2. 测试集评估:

    • 对于线性回归模型,我们使用测试集数据计算代价函数 J。
    • 对于逻辑回归模型,我们利用测试数据集计算代价函数,并计算误分类率。对于每一个测试集实例,计算 (h(x) - y)^2,然后对计算结果求平均。

这样,我们就能够在新的数据集上验证我们的模型表现,并得到更准确的评估。这种方法能够帮助我们判断模型是否过拟合,提高算法的泛化能力。

三、模型选择和交叉验证集

模型选择步骤

我们将数据划分为训练集、交叉验证集和测试集,其中分配的百分比通常为 60% 的数据作为训练集,20% 的数据作为交叉验证集,剩下的 20% 作为测试集。

模型选择的步骤如下:

  1. 使用训练集训练出多个模型,每个模型对应不同次数的二项式模型。
  2. 对每个模型使用交叉验证集计算交叉验证误差(代价函数的值)。
  3. 选择具有最小交叉验证误差的模型作为最终模型。
  4. 使用步骤 3 中选出的模型对测试集计算得出推广误差(代价函数的值)。

这个过程确保我们选择的模型在未见过的数据上表现良好,避免了仅仅根据训练误差来选择模型可能导致的过拟合问题。

误差计算方法

在以上过程中,我们使用了不同数据集上的不同误差计算方法:

  • 训练误差: 使用训练集数据计算代价函数 J。
  • 交叉验证误差: 对于每一个模型,使用交叉验证集数据计算代价函数。
  • 测试误差: 对于最终选出的模型,使用测试集数据计算代价函数。

这样的综合考虑可以更全面地评估模型的性能,确保所选择的模型对于未知数据的泛化能力较强。

参考资料

[中英字幕]吴恩达机器学习系列课程

黄海广博士 - 吴恩达机器学习个人笔记

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1249596.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

为什么要隐藏id地址?使用IP代理技术可以实现吗?

随着网络技术的不断发展,越来越多的人开始意识到保护个人隐私的重要性。其中,隐藏自己的IP地址已经成为了一种常见的保护措施。那么,为什么要隐藏IP地址?使用IP代理技术可以实现吗?下面就一起来探讨这些问题。 首先&am…

【Qt之QTextDocument】使用及表格显示富文本解决方案

【Qt之QTextDocument】使用 描述常用方法及示例使用QTextList使用QTextBlock使用QTextTable表格显示富文本结论 描述 QTextDocument类保存格式化的文本。 QTextDocument是结构化富文本文档的容器,支持样式文本和各种文档元素,如列表、表格、框架和图像。…

oled的使用 动态的变量 51

源码均在IIC手写程序中 外部中断实现变量加一 #include "reg52.h" #include "main.h" #include <intrins.h> #include "OLED.h" #include "bmp.h" #include "Delay.h" sbit LED1 P1^0; sbit LED2 P1^1; sbit LED3…

项目实战详细讲解带有条件响应的 SQL 盲注、MFA绕过技术、MFA绕过技术、2FA绕过和技巧、CSRF绕过、如何寻找NFT市场中的XSS漏洞

项目实战详细讲解带有条件响应的 SQL 盲注、MFA绕过技术、MFA绕过技术、2FA绕过和技巧、CSRF绕过、如何寻找NFT市场中的XSS漏洞。 带有条件响应的 SQL 盲注 这篇文章的核心要点如下: 漏洞发现:作者在Portswigger提供的实验室中发现了一个盲SQL注入漏洞。这个漏洞存在于一个应…

【前端】数据行点击选择

前言 【前篇文章】说了,我们公司的核心价值就是让人越来越懒,能怎么便捷就怎么便捷,主打一个简单实用又快捷,为了实现这个目标,我看成这个列表陷入了深思在想,要不要子表的数据加载在点击这个行时,就可以展示数据,这样就不用每次都要点那个小圆圈啦。 查资料 这显然…

2、git进阶操作

2、git进阶操作 2.1.1 分支的创建 命令参数含义git branch (git checkout -b)<new_branch> <old_branch>表示创建分支-d <-D>删除分支 –d如果分支没有合并&#xff0c;git会提醒&#xff0c;-D强制删除-a -v查看分支-m重新命名分支commit id从指定的commi…

centos 7.9 下利用miniconda里的pyinstaller打包python程序为二进制文件操作方法

centos 7.9 下利用miniconda里的pyinstaller打包python程序为二进制文件操作方法 一.centos 7.9 操作系统安装 参考&#xff1a;https://blog.csdn.net/qq_46015509/article/details/134572030?utm_sourceminiapp_weixin 安装完成后用后台连接工具连上虚拟机 二.安装python3 …

「Verilog学习笔记」数据串转并电路

专栏前言 本专栏的内容主要是记录本人学习Verilog过程中的一些知识点&#xff0c;刷题网站用的是牛客网 关于什么是Valid/Ready握手机制&#xff1a; 深入 AXI4 总线&#xff08;一&#xff09;握手机制 - 知乎 时序图含有的信息较多&#xff0c;观察时序图需要注意&#xff1a…

【自主探索】基于 rrt_exploration 的单个机器人自主探索建图

文章目录 一、rrt_exploration 介绍1、原理2、主要思想3、拟解决的问题4、优缺点 二、安装环境三、安装与运行1、安装2、运行 四、配置自己的机器人1、Robots Network2、Robots frame names in tf3、Robots node and topic names4、Setting up the navigation stack on the rob…

芯能科技-603105 三季报分析(20231123)

芯能科技-603105 基本情况 公司名称&#xff1a;浙江芯能光伏科技股份有限公司 A股简称&#xff1a;芯能科技 成立日期&#xff1a;2008-07-09 上市日期&#xff1a;2018-07-09 所属行业&#xff1a;电气机械和器材制造业 周期性&#xff1a;1 主营业务&#xff1a;分布式光伏解…

计算机思考与整理

应用程序 虚拟机 windows,linux等操作系统&#xff08;向上层应用程序提供接口&#xff09; x86架构&#xff0c;MIPS&#xff0c;ARM(提供指令集) 硬件组件 硬件组件&#xff08;hardware components&#xff09;是指构成计算机或电子设备的实体部分&#xff0c;它们包括各…

数据结构-归并排序+计数排序

1.归并排序 基本思想&#xff1a; 归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法的一个非常典型的应用。将已有序的子序列合并&#xff0c;得到完全有序的序列&#xff1b;即先使每个子序列有序&#xff0c;再使子序列段间有序。若将两个有序表合并成一个…

机器人规划算法——movebase导航框架源码分析

这里对MoveBase类的类成员进行了声明&#xff0c;以下为比较重要的几个类成员函数。 构造函数 MoveBase::MoveBase | 初始化Action 控制主体 MoveBase::executeCb收到目标&#xff0c;触发全局规划线程&#xff0c;循环执行局部规划 全局规划线程 void MoveBase::planThread |…

大模型推理加速框架vllm部署的实战方案

大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法…

CVE-2023-22515:Atlassian Confluence权限提升漏洞复现 [附POC]

文章目录 Atlassian Confluence权限提升(CVE-2023-22515)漏洞复现 [附POC]0x01 前言0x02 漏洞描述0x03 影响版本0x04 漏洞环境0x05 漏洞复现1.访问漏洞环境2.构造POC3.复现 0x06 修复建议 Atlassian Confluence权限提升(CVE-2023-22515)漏洞复现 [附POC] 0x01 前言 免责声明&…

C练习题_3

一、单项选择题&#xff08;本大题共20小题&#xff0c;每小题2分&#xff0c;共40分。在每小题给出的四个备选项中,选出一个正确的答案&#xff0c;并将所选项前的字母填写在答题纸的相应位置上。 以下正确的C语言自定义标识符是() A. la B. 2a C. do D. a.12 2.在C语言中,错…

【libGDX】Mesh纹理贴图

1 前言 纹理贴图的本质是将图片的纹理坐标与模型的顶点坐标建立一一映射关系。纹理坐标的 x、y 轴正方向分别朝右和朝下&#xff0c;如下。 2 纹理贴图 本节将使用 Mesh、ShaderProgram、Shader 实现纹理贴图&#xff0c;OpenGL ES 的实现见博客 → 纹理贴图。 DesktopLauncher…

Matplotlib图形注释_Python数据分析与可视化

Matplotlib图形注释 添加注释文字、坐标变换 有的时候单单使用图形无法完整清晰的表达我们的信息&#xff0c;我们还需要进行文字进行注释&#xff0c;所以matplotlib提供了文字、箭头等注释可以突出图形中重点信息。 添加注释 为了使我们的可视化图形让人更加容易理解&#…

软件测试职业规划导图

公司开发的产品专业性较强&#xff0c;软件测试人员需要有很强的专业知识&#xff0c;现在软件测试人员发展出现了一种测试管理者不愿意看到的景象&#xff1a; 1、开发技术较强的软件测试人员转向了软件开发(非测试工具开发)&#xff1b; 2、业务能力较强的测试人员转向了软件…

C++初级项目webserver项目流程介绍(2)

一、引言 C的webserver项目是自己在学完网络编程后根据网课的内容做的一个初级的网络编程项目。 这个项目的效果是可以在浏览器通过输入网络IP地址和端口&#xff0c;然后打开对应的文件目录 效果如下&#xff1a; 也可以打开文件夹后点击目录&#xff0c;打开到对应的文件夹…