使用C++从0到1实现人工智能神经网络及实战案例

news2024/12/26 20:58:21

引言

既然是要用C++来实现,那么我们自然而然的想到设计一个神经网络类来表示神经网络,这里我称之为Net类。由于这个类名太过普遍,很有可能跟其他人写的程序冲突,所以我的所有程序都包含在namespace liu中,由此不难想到我姓刘。在之前的博客反向传播算法资源整理中,我列举了几个比较不错的资源。对于理论不熟悉而且学习精神的同学可以出门左转去看看这篇文章的资源。这里假设读者对于神经网络的基本理论有一定的了解。

一、Net类的设计与神经网络初始化

神经网络的要素

在真正开始coding之前还是有必要交代一下神经网络基础,其实也就是设计类和写程序的思路。简而言之,神经网络的包含几大要素:

  • 神经元节点

  • 层(layer)

  • 权值(weights)

  • 偏置项(bias)

神经网络的两大计算过程分别是前向传播和反向传播过程。每层的前向传播分别包含加权求和(卷积?)的线性运算和激活函数的非线性运算。反向传播主要是用BP算法更新权值。 虽然里面还有很多细节,但是对于作为第一篇的本文来说,以上内容足够了。

Net类的设计

Net类——基于Mat

神经网络中的计算几乎都可以用矩阵计算的形式表示,这也是我用OpenCV的Mat类的原因之一,它提供了非常完善的、充分优化过的各种矩阵运算方法;另一个原因是我最熟悉的库就是OpenCV......有很多比较好的库和框架在实现神经网络的时候会用很多类来表示不同的部分。比如Blob类表示数据,Layer类表示各种层,Optimizer类来表示各种优化算法。但是这里没那么复杂,主要还是能力有限,只用一个Net类表示神经网络。

还是直接让程序说话,Net类包含在Net.h中,大致如下。

#ifndef NET_H
#define NET_H
#endif // NET_H
#pragma once
#include <iostream>
#include<opencv2\core\core.hpp>
#include<opencv2\highgui\highgui.hpp>
//#include<iomanip>
#include"Function.h"
namespace liu
{
    class Net
    {
    public:
        std::vector<int> layer_neuron_num;
        std::vector<cv::Mat> layer;
        std::vector<cv::Mat> weights;
        std::vector<cv::Mat> bias;
    public:
        Net() {};
        ~Net() {};
        //Initialize net:genetate weights matrices、layer matrices and bias matrices
        // bias default all zero
        void initNet(std::vector<int> layer_neuron_num_);
        //Initialise the weights matrices.
        void initWeights(int type = 0, double a = 0., double b = 0.1);
        //Initialise the bias matrices.
        void initBias(cv::Scalar& bias);
        //Forward
        void forward();
        //Forward
        void backward();
    protected:
        //initialise the weight matrix.if type =0,Gaussian.else uniform.
        void initWeight(cv::Mat &dst, int type, double a, double b);
        //Activation function
        cv::Mat activationFunction(cv::Mat &x, std::string func_type);
        //Compute delta error
        void deltaError();
        //Update weights
        void updateWeights();
    };
}

说明

以上不是Net类的完整形态,只是对应于本文内容的一个简化版,简化之后看起来会更加清晰明了。

成员变量与成员函数

现在Net类只有四个成员变量,分别是:

  • 每一层神经元数目(layer_neuron_num)

  • 层(layer)

  • 权值矩阵(weights)

  • 偏置项(bias)

权值用矩阵表示就不用说了,需要说明的是,为了计算方便,这里每一层和偏置项也用Mat表示,每一层和偏置都用一个单列矩阵来表示。

Net类的成员函数除了默认的构造函数和析构函数,还有:

  • initNet():用来初始化神经网络

  • initWeights():初始化权值矩阵,调用initWeight()函数

  • initBias():初始化偏置项

  • forward():执行前向运算,包括线性运算和非线性激活,同时计算误差

  • backward():执行反向传播,调用updateWeights()函数更新权值。

这些函数已经是神经网络程序核心中的核心。剩下的内容就是慢慢实现了,实现的时候需要什么添加什么,逢山开路,遇河架桥。

神经网络初始化

initNet()函数

先说一下initNet()函数,这个函数只接受一个参数——每一层神经元数目,然后借此初始化神经网络。这里所谓初始化神经网络的含义是:生成每一层的矩阵、每一个权值矩阵和每一个偏置矩阵。听起来很简单,其实也很简单。

实现代码在Net.cpp中。

这里生成各种矩阵没啥难点,唯一需要留心的是权值矩阵的行数和列数的确定。值得一提的是这里把权值默认全设为0。

    //Initialize net
    void Net::initNet(std::vector<int> layer_neuron_num_)
    {
        layer_neuron_num = layer_neuron_num_;
        //Generate every layer.
        layer.resize(layer_neuron_num.size());
        for (int i = 0; i < layer.size(); i++)
        {
            layer[i].create(layer_neuron_num[i], 1, CV_32FC1);
        }
        std::cout << "Generate layers, successfully!" << std::endl;
        //Generate every weights matrix and bias
        weights.resize(layer.size() - 1);
        bias.resize(layer.size() - 1);
        for (int i = 0; i < (layer.size() - 1); ++i)
        {
            weights[i].create(layer[i + 1].rows, layer[i].rows, CV_32FC1);
            //bias[i].create(layer[i + 1].rows, 1, CV_32FC1);
            bias[i] = cv::Mat::zeros(layer[i + 1].rows, 1, CV_32FC1);
        }
        std::cout << "Generate weights matrices and bias, successfully!" << std::endl;
        std::cout << "Initialise Net, done!" << std::endl;
    }

权值初始化

initWeight()函数

权值初始化函数initWeights()调用initWeight()函数,其实就是初始化一个和多个的区别。

偏置初始化是给所有的偏置赋相同的值。这里用Scalar对象来给矩阵赋值。

    //initialise the weights matrix.if type =0,Gaussian.else uniform.
    void Net::initWeight(cv::Mat &dst, int type, double a, double b)
    {
        if (type == 0)
        {
            randn(dst, a, b);
        }
        else
        {
            randu(dst, a, b);
        }
    }
    //initialise the weights matrix.
    void Net::initWeights(int type, double a, double b)
    {
        //Initialise weights cv::Matrices and bias
        for (int i = 0; i < weights.size(); ++i)
        {
            initWeight(weights[i], 0, 0., 0.1);
        }
    }

偏置初始化是给所有的偏置赋相同的值。这里用Scalar对象来给矩阵赋值。

    //Initialise the bias matrices.
    void Net::initBias(cv::Scalar& bias_)
    {
        for (int i = 0; i < bias.size(); i++)
        {
            bias[i] = bias_;
        }
    }

至此,神经网络需要初始化的部分已经全部初始化完成了。

初始化测试

我们可以用下面的代码来初始化一个神经网络,虽然没有什么功能,但是至少可以测试下现在的代码是否有BUG:

#include"../include/Net.h"
//<opencv2\opencv.hpp>
using namespace std;
using namespace cv;
using namespace liu;
int main(int argc, char *argv[])
{
    //Set neuron number of every layer
    vector<int> layer_neuron_num = { 784,100,10 };
    // Initialise Net and weights
    Net net;
    net.initNet(layer_neuron_num);
    net.initWeights(0, 0., 0.01);
    net.initBias(Scalar(0.05));
    getchar();
    return 0;
}

二、前向传播与反向传播

在Net类的设计和神经网络的初始化中,大部分还是比较简单的。因为最重要事情就是生成各种矩阵并初始化。神经网络中的重点和核心就是本文的内容——前向和反向传播两大计算过程。每层的前向传播分别包含加权求和(卷积?)的线性运算和激活函数的非线性运算。反向传播主要是用BP算法更新权值。

前向过程

如前所述,前向过程分为线性运算和非线性运算两部分。相对来说比较简单。

线型运算可以用Y=WX+b 来表示,其中X是输入样本,这里即是第N层的单列矩阵,W是权值矩阵,Y是加权求和之后的结果矩阵,大小与N+1层的单列矩阵相同。b是偏置,默认初始化全部为0。不难推知鬼知道我推了多久!,W的大小是 (N+1).rows * N.rows。正前面中生成weights矩阵的代码实现一样:

weights[i].create(layer[i + 1].rows, layer[i].rows, CV_32FC1); 

非线性运算可以用O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1245566.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

IIC驱动OLED HAL库+CubeMX

一.IIC传输数据的格式 1.写操作 2.读操作 3.IIC信号 二. IIC底层驱动 #define SCL_PIN GPIO_PIN_6 #define SDA_PIN GPIO_PIN_7#define SCL_PORT GPIOB #define SDA_PORT GPIOB/********************** 函数宏定义 **********************/ #d…

element-ui表格无法横向拖动问题

是不是用到了fixed // 因为我只有在小屏显示不下的时候才会出现这个问题所以我在这里做了适配(建议把样式放在全局) media screen and (max-width: 1800px) {// 由于使用了fixed导致横向条无法拖动出现bug.Table-page .el-table__fixed {height: auto !important;bottom: 2px …

在ASP.NET Core 中使用 .NET Aspire 消息传递组件

前言 云原生应用程序通常需要可扩展的消息传递解决方案&#xff0c;以提供消息队列、主题和订阅等功能。.NET Aspire 组件简化了连接到各种消息传递提供程序&#xff08;例如 Azure 服务总线&#xff09;的过程。在本教程中&#xff0c;小编将为大家介绍如何创建一个 ASP.NET …

[架构之路-249]:目标系统 - 设计方法 - 软件工程 - 需求工程- 需求开发:如何用图形表达需求,结构化方法的需求分析

目录 一、概述 二、数据模型&#xff1a;E-R图/实体关系图&#xff08;数据单元之间的结构关系&#xff09; 三、功能模型&#xff1a;数据流图DFD&#xff08;逻辑运算&#xff0c;包括输入和输出&#xff0c;实体之间的关系&#xff09;&#xff1a;输入》处理 》 输出 四…

Mysql 锁机制分析

整体业务代码精简逻辑如下&#xff1a; Transaction public void service(Integer id) {delete(id);insert(id); }数据库实例监控&#xff1a; 当时通过分析上游问题流量限流解决后&#xff0c;后续找时间又重新分析了下问题发生的根本原因&#xff0c;现将其总结如下&#xf…

使用端口扫描工具解决开放端口威胁并增强安全性

从暴露网络漏洞到成为入侵者的通道&#xff0c;开放端口可能会带来多种风险向量&#xff0c;威胁到网络的机密性、完整性和可用性。因此&#xff0c;最佳做法是关闭打开的端口&#xff0c;为了应对开放端口带来的风险&#xff0c;网络管理员依靠端口扫描工具来识别、检查、分析…

JS中的OOP

JS中的OOP OOP 为我们解决了什么问题&#xff1f;想象一下&#xff0c;我们希望为教师提供一个平台&#xff0c;每位注册的教师都可以提交分数&#xff0c;并为课程分配作业和其他内容。 如果有一个地方&#xff08;在本例中是一个对象&#xff09;&#xff0c;可以访问所有教…

uboot中nfs和tftp方式获取文件

NFS文件系统挂载 服务器端配置如下 1.Server端需要安装NFS服务&#xff1a; sudo apt-get install nfs-kernel-server2.创建需要挂载的路径&#xff1a; mkdir -p /home/workspace/mercury/nfs_path3.创建共享目录&#xff1a; ①vim /etc/exports ②在文件中添加&#xff…

合并两个有序链表,剑指offer,力扣

目录 力扣题目地址&#xff1a; 原题题目&#xff1a; 我们直接看题解吧&#xff1a; 解题方法&#xff1a; 审题目事例提示&#xff1a; 解题思路&#xff1a; 具体流程如下&#xff1a; 代码实现&#xff1a; 知识补充&#xff1a; 力扣题目地址&#xff1a; 21. 合并两个有序…

git查看某个commit属于哪个分支方法(如何查看commit属于哪个分支)

有时候&#xff0c;当我们由于业务需求很多时&#xff0c;基于同一个分支新建的项目分支也会很多。 在某个时间节点&#xff0c;我们需要合并部分功能点时&#xff0c;我们会忘了这个分支是否已经合入哪个功能点&#xff0c;我们就会查看所有的commit记录&#xff0c;当我们找到…

2024-NeuDS-数据库题目集

一.判断题 1.在数据库中产生数据不一致的根本原因是冗余。T 解析&#xff1a;数据冗余是数据库中产生数据不一致的根本原因&#xff0c;因为当同一数据存储在多个位置时&#xff0c;如果其中一个位置的数据被修改&#xff0c;其他位置的数据就不一致了。因此&#xff0c;在数据…

GPIO HAL库+CubeMX

以正点原子精英版为例&#xff1a; 一.创建HAL库模块 二.GPIO输出 1.自己编写 void led_init(void) {GPIO_InitTypeDef gpio_init_struct;__HAL_RCC_GPIOB_CLK_ENABLE();gpio_init_struct.Pin GPIO_PIN_5;gpio_init_struct.Mode GPIO_MODE_OUTPUT_PP;gpio_init_struct.Spee…

linux -系统通用命令查询

有时候内网环境下&#xff0c;系统有些命令没有安装因此掌握一些通用的linux 命令也可以帮助我们解决一些问题查看 1.查看系统内核版本 uname -r2.查看系统版本 cat /etc/os-release3. 查看cpu 配置 lscpu4.查看内存信息 free [参数] 中各个数值的解释如下表 数值解释t…

玻色量子“揭秘”之可满足性问题(SAT)与QUBO建模

​ 摘要&#xff1a;布尔可满足性问题&#xff08;Boolean Satisfiability Problem&#xff0c;简称SAT问题&#xff09;是逻辑学和计算机科学中的一个问题&#xff0c;它的目的是确定是否存在一种解释&#xff0c;使给定的布尔公式成立。换句话说&#xff0c;它询问给定布尔公…

OpenCV快速入门:图像分析——图像分割和图像修复

文章目录 前言一、图像分割1.1 漫水填充法1.1.1 漫水填充法原理1.1.2 漫水填充法实现步骤1.1.3 代码实现 1.2 分水岭法1.2.1 分水岭法原理1.2.2 分水岭法实现步骤1.2.3 代码实现 1.3 GrabCut法1.3.1 GrabCut法原理1.3.2 GrabCut法实现步骤1.3.3 代码实现 1.4 Mean-Shift法1.4.1…

面试题:为什么生产环境中,建议禁用 Redis 的 keys 命令?

keys命令的用法&#xff1a; keys pattern查找符合正则匹配的key的列表。扫描对象是Redis服务中所有的key&#xff0c;想想都很慢对不对&#xff1f; 同时执行keys命令的同时&#xff0c;Redis进程将被阻塞&#xff0c;无法执行其他命令&#xff0c;假如超过了哨兵的down-aft…

Android系统预装带so的apk

文章目录 前言配置新建Android.mk核心命令首次编译Apk已生成 但是无arm文件system.img 也已经更新 第一次刷入打开APP后闪退加入so文件如下为修改后的mk 第二次刷入mm报错查看手机系统abi路径下分别生成两个环境的so官方LOCAL_MULTILIB描述so打包错误验证so位数注释v7部分 第三…

界面组件DevExpress Reporting v23.1 - Web报表设计器功能升级

DevExpress Reporting是.NET Framework下功能完善的报表平台&#xff0c;它附带了易于使用的Visual Studio报表设计器和丰富的报表控件集&#xff0c;包括数据透视表、图表&#xff0c;因此您可以构建无与伦比、信息清晰的报表 界面组件DevExpress Reporting v23.1已经发布一段…

图解分库分表

中大型项目中&#xff0c;一旦遇到数据量比较大&#xff0c;小伙伴应该都知道就应该对数据进行拆分了。有垂直和水平两种。 垂直拆分比较简单&#xff0c;也就是本来一个数据库&#xff0c;数据量大之后&#xff0c;从业务角度进行拆分多个库。如下图&#xff0c;独立的拆分出…