图解分库分表

news2024/12/27 11:13:53

中大型项目中,一旦遇到数据量比较大,小伙伴应该都知道就应该对数据进行拆分了。有垂直和水平两种

垂直拆分比较简单,也就是本来一个数据库,数据量大之后,从业务角度进行拆分多个库。如下图,独立的拆分出订单库和用户库。

图片

水平拆分的概念,是同一个业务数据量大之后,进行水平拆分。

图片

上图中订单数据达到了4000万,我们也知道mysql单表存储量推荐是百万级,如果不进行处理,mysql单表数据太大,会导致性能变慢。使用方案可以参考数据进行水平拆分。把4000万数据拆分4张表或者更多。当然也可以分库,再分表;把压力从数据库层级分开。

关注公众号架构之路,回复:666,可获取一份 2TB 架构师资料。

分库分表方案

分库分表方案中有常用的方案,hash取模和range范围方案;分库分表方案最主要就是路由算法,把路由的key按照指定的算法进行路由存放。下边来介绍一下两个方案的特点。

1、hash取模方案

图片

在我们设计系统之前,可以先预估一下大概这几年的订单量,如:4000万。每张表我们可以容纳1000万,也我们可以设计4张表进行存储。

那具体如何路由存储的呢?hash的方案就是对指定的路由key(如:id)对分表总数进行取模,上图中,id=12的订单,对4进行取模,也就是会得到0,那此订单会放到0表中。id=13的订单,取模得到为1,就会放到1表中。为什么对4取模,是因为分表总数是4。

  • 优点:

订单数据可以均匀的放到那4张表中,这样此订单进行操作时,就不会有热点问题。

热点的含义:热点的意思就是对订单进行操作集中到1个表中,其他表的操作很少。

订单有个特点就是时间属性,一般用户操作订单数据,都会集中到这段时间产生的订单。如果这段时间产生的订单 都在同一张订单表中,那就会形成热点,那张表的压力会比较大。

  • 缺点:

将来的数据迁移和扩容,会很难。

如:业务发展很好,订单量很大,超出了4000万的量,那我们就需要增加分表数。如果我们增加4个表

图片

一旦我们增加了分表的总数,取模的基数就会变成8,以前id=12的订单按照此方案就会到4表中查询,但之前的此订单时在0表的,这样就导致了数据查不到。就是因为取模的基数产生了变化。

遇到这个情况,我们小伙伴想到的方案就是做数据迁移,把之前的4000万数据,重新做一个hash方案,放到新的规划分表中。也就是我们要做数据迁移。这个是很痛苦的事情。有些小公司可以接受晚上停机迁移,但大公司是不允许停机做数据迁移的。

当然做数据迁移可以结合自己的公司的业务,做一个工具进行,不过也带来了很多工作量,每次扩容都要做数据迁移

那有没有不需要做数据迁移的方案呢,我们看下面的方案

2、range范围方案

range方案也就是以范围进行拆分数据。

图片

range方案比较简单,就是把一定范围内的订单,存放到一个表中;如上图id=12放到0表中,id=1300万的放到1表中。设计这个方案时就是前期把表的范围设计好。通过id进行路由存放。

  • 优点

我们小伙伴们想一下,此方案是不是有利于将来的扩容,不需要做数据迁移。即时再增加4张表,之前的4张表的范围不需要改变,id=12的还是在0表,id=1300万的还是在1表,新增的4张表他们的范围肯定是 大于 4000万之后的范围划分的。

  • 缺点

有热点问题,我们想一下,因为id的值会一直递增变大,那这段时间的订单是不是会一直在某一张表中,如id=1000万 ~ id=2000万之间,这段时间产生的订单是不是都会集中到此张表中,这个就导致1表过热,压力过大,而其他的表没有什么压力。

3、总结

hash取模方案:没有热点问题,但扩容迁移数据痛苦

range方案:不需要迁移数据,但有热点问题。

那有什么方案可以做到两者的优点结合呢?,即不需要迁移数据,又能解决数据热点的问题呢?

其实还有一个现实需求,能否根据服务器的性能以及存储高低,适当均匀调整存储呢?

图片

方案思路

hash是可以解决数据均匀的问题,range可以解决数据迁移问题,那我们可以不可以两者相结合呢?利用这两者的特性呢?

我们考虑一下数据的扩容代表着,路由key(如id)的值变大了,这个是一定的,那我们先保证数据变大的时候,首先用range方案让数据落地到一个范围里面。这样以后id再变大,那以前的数据是不需要迁移的

但又要考虑到数据均匀,那是不是可以在一定的范围内数据均匀的呢?因为我们每次的扩容肯定会事先设计好这次扩容的范围大小,我们只要保证这次的范围内的数据均匀是不是就ok了。

方案设计

我们先定义一个group组概念,这组里面包含了一些分库以及分表,如下图

图片

上图有几个关键点:

1)id=0~4000万肯定落到group01组中

2)group01组有3个DB,那一个id如何路由到哪个DB?

3)根据hash取模定位DB,那模数为多少?模数要为所有此group组DB中的表数,上图总表数为10。为什么要去表的总数?而不是DB总数3呢?

4)如id=12,id%10=2;那值为2,落到哪个DB库呢?这是设计是前期设定好的,那怎么设定的呢?

5)一旦设计定位哪个DB后,就需要确定落到DB中的哪张表呢?

图片

核心主流程

图片

按照上面的流程,我们就可以根据此规则,定位一个id,我们看看有没有避免热点问题。

关注公众号架构之路,回复:666,可获取一份 2TB 架构师资料。

我们看一下,id在【0,1000万】范围内的,根据上面的流程设计,1000万以内的id都均匀的分配到DB_0,DB_1,DB_2三个数据库中的Table_0表中,为什么可以均匀,因为我们用了hash的方案,对10进行取模。

上面我们也提了疑问,为什么对表的总数10取模,而不是DB的总数3进行取模?我们看一下为什么DB_0是4张表,其他两个DB_1是3张表?

在我们安排服务器时,有些服务器的性能高,存储高,就可以安排多存放些数据,有些性能低的就少放点数据。如果我们取模是按照DB总数3,进行取模,那就代表着【0,4000万】的数据是平均分配到3个DB中的,那就不能够实现按照服务器能力适当分配了。

按照Table总数10就能够达到,看如何达到

图片

上图中我们对10进行取模,如果值为【0,1,2,3】就路由到DB_0,【4,5,6】路由到DB_1,【7,8,9】路由到DB_2。现在小伙伴们有没有理解,这样的设计就可以把多一点的数据放到DB_0中,其他2个DB数据量就可以少一点。DB_0承担了4/10的数据量,DB_1承担了3/10的数据量,DB_2也承担了3/10的数据量。整个Group01承担了【0,4000万】的数据量。

注意:小伙伴千万不要被DB_1或DB_2中table的范围也是0~4000万疑惑了,这个是范围区间,也就是id在哪些范围内,落地到哪个表而已。

上面一大段的介绍,就解决了热点的问题,以及可以按照服务器指标,设计数据量的分配。

图片

如何扩容

其实上面设计思路理解了,扩容就已经出来了;那就是扩容的时候再设计一个group02组,定义好此group的数据范围就ok了。

图片

因为是新增的一个group01组,所以就没有什么数据迁移概念,完全是新增的group组,而且这个group组照样就防止了热点,也就是【4000万,5500万】的数据,都均匀分配到三个DB的table_0表中,【5500万~7000万】数据均匀分配到table_1表中。

系统设计

图片

思路确定了,设计是比较简单的,就3张表,把group,DB,table之间建立好关联关系就行了。

图片

group和DB的关系

图片

table和db的关系

上面的表关联其实是比较简单的,只要原理思路理顺了,就ok了。小伙伴们在开发的时候不要每次都去查询三张关联表,可以保存到缓存中(本地jvm缓存),这样不会影响性能。

图片

一旦需要扩容,小伙伴是不是要增加一下group02关联关系,那应用服务需要重新启动吗?

简单点的话,就凌晨配置,重启应用服务就行了。但如果是大型公司,是不允许的,因为凌晨也有订单的。那怎么办呢?本地jvm缓存怎么更新呢?

其实方案也很多,可以使用用zookeeper,也可以使用分布式配置,这里是比较推荐使用分布式配置中心的,可以将这些数据配置到分布式配置中心去。

(完)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1245534.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【PyQt】(自定义类)阴影遮罩

写了一个感觉有些用的小玩具。 用于给控件添加阴影遮罩(强调主控件的同时屏蔽其余控件的点击) 自定义阴影遮罩Mask: from PyQt5.QtCore import QPoint,QRect,Qt,QPoint,QSize from PyQt5.QtWidgets import QWidget,QLabel,QPushButton,QVBoxLayout from PyQt5.QtGu…

Javaweb之前后台分离开发介绍的详细解析

2.1 前后台分离开发介绍 在之前的课程中,我们介绍过,前端开发有2种方式:前后台混合开发和前后台分离开发。 前后台混合开发,顾名思义就是前台后台代码混在一起开发,如下图所示: 这种开发模式有如下缺点&a…

视频剪辑技巧:如何高效批量转码MP4视频为MOV格式

在视频剪辑的过程中,经常会遇到将MP4视频转码为MOV格式的情况。这不仅可以更好地编辑视频,还可以提升视频的播放质量和兼容性。对于大量视频文件的转码操作,如何高效地完成批量转码呢?现在一起来看看云炫AI智剪如何智能转码&#…

基于STC12C5A60S2系列1T 8051单片读写掉电保存数据IIC总线器件24C02一字节并显示在液晶显示器LCD1602上应用

基于STC12C5A60S2系列1T 8051单片读写掉电保存数据IIC总线器件24C02一字节并显示在液晶显示器LCD1602上应用 STC12C5A60S2系列1T 8051单片机管脚图STC12C5A60S2系列1T 8051单片机I/O口各种不同工作模式及配置STC12C5A60S2系列1T 8051单片机I/O口各种不同工作模式介绍IIC通信简单…

【Java从入门到大牛】网络编程

🔥 本文由 程序喵正在路上 原创,CSDN首发! 💖 系列专栏:Java从入门到大牛 🌠 首发时间:2023年11月23日 🦋 欢迎关注🖱点赞👍收藏🌟留言&#x1f4…

【LeetCode:2304. 网格中的最小路径代价 | dijkstra(迪杰斯特拉)】

🚀 算法题 🚀 🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀 🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨ 🌲 作者简介:硕风和炜,…

YOLOv8改进 | CARAFE既减少参数又提高精度的上采样方法

论文地址:官方论文地址点击即可跳转 代码地址:官方代码地址点击即可跳转 一、本文介绍 本文给大家带来的CARAFE(Content-Aware ReAssembly of FEatures)是一种用于增强卷积神经网络特征图的上采样方法。其主要旨在改进传统的上采…

手写数字可视化_Python数据分析与可视化

手写数字可视化 手写数字流形学习 手写数字 手写数字无论是在数据可视化还是深度学习都是一个比较实用的案例。 数据在sklearn中,包含近2000份8 x 8的手写数字缩略图。 首先需要先下载数据,然后使用plt.imshow()对一些图形进行可视化: 打开c…

Springmvc原理解析

1. DispatcherServlet springmvc的核心控制器,负责截获所有的请求,当截获请求后委托给HandlerMapping进行请求映射的解析工作,目的是找到哪一个Controller的方法可以处理该请求,找到后再交由给HandlerAdaptor去负责调用并返回Mod…

利用人工智能打破应试教育惯性促进学生思维活化与创新能力培养的研究

全文均为人工智能独立研究完成 应试教育导致学生迷信标准答案惯性导致思维僵化-移动机器人-CSDN博客 用AI魔法打败AI魔法-CSDN博客 课题名称建议:“利用人工智能打破应试教育惯性,促进学生思维活化与创新能力培养研究”。 这个课题名称明确指出了研究的…

ConcurrentHashMap的数据结构+以及各个版本之间的区别

ConcurrentHashMap 1.7与1.8的区别 1、锁结构不同 2、put的流程不同 3、size的计算方式不同(1.8使用的使用basecell[]计算,有点类似于LongAdder,1.7使用三级通缉判断是否一样,不一样通过分段式加锁再求和) 4、数据结构不同,1.6 Re…

[BJDCTF2020]The mystery of ip1

提示 ssti模板注入head头x-forwarded-for 每一次做题的最开始流程都大致因该是 信息收集找可以操控的地方 查看hint页面的源代码又发现它提示说 ####你知道为什么会知道你的ip吗 查看flag页面 从刚才给我的提示以及他这里显示的我的ip,大概找到了我可操作的可控点 …

Flutter 小技巧之 3.16 升级最坑 M3 默认适配技巧

如果要说 Flutter 3.16 升级里是最坑的是什么?那我肯定要说是 Material 3 default (M3)。 倒不是说 M3 bug 多,也不是 M3 在 3.16 上使用起来多麻烦,因为虽然从 3.16 开始,MaterialApp 里的 useMaterial3 …

海报设计必备:揭秘5款炙手可热的设计工具

1.即时设计:能实现在线协作的海报设计软件 即时设计作为 2020 年上线的国产设计工具,目前已经有了超百万的注册用户,获得了广大设计师的一致好评。与其他传统海报设计软件相比,即时设计具有这几个优点:一是所有功能都…

自定义字符-摄氏度汉字一

本文为博主 日月同辉,与我共生,csdn原创首发。希望看完后能对你有所帮助,不足之处请指正!一起交流学习,共同进步! > 发布人:日月同辉,与我共生_单片机-CSDN博客 > 欢迎你为独创博主日月同…

JDK11新特性

目录 一、JShell 二、Dynamic Class-File Constants类文件新添的一种结构 三、局部变量类型推断(var ”关键字”) 四、新加的一些实用API 1. 新的本机不可修改集合API 2. Stream 加强 3. String 加强 4. Optional 加强 5. 改进的文件API 五、移…

Django之Cookie与Session,CBV加装饰器

前言 会话跟踪技术 在一个会话的多个请求中共享数据,这就是会话跟踪技术。例如在一个会话中的请求如下:  请求银行主页; 请求登录(请求参数是用户名和密码);请求转账(请求参数与转账相关的数…

技术短视频账号矩阵seo系统--源头开发---saas工具

专注短视频账号矩阵系统源头开发---saas营销化工具,目前我们作为一家纯技术开发团队目前已经专注打磨开发这套系统企业版/线下版两个版本的saas营销拓客工具已经3年了,本套系统逻辑主要是从ai智能批量剪辑、账号矩阵全托管发布、私信触单收录、文案ai智能…

如何为您的企业选择合适的多因素认证?

在传统的网络安全架构中,重点在于防止非法入侵,例如防火墙、VPN 、堡垒机等安全设备的重心都在于防止用户违规访问企业资源,一旦合法用户的账号密码被入侵者拿到,就可以冒充合法用户访问企业资源,所有的安全设备形同虚…

通过Spring整合MyBatis实现持久层操作

文章目录 为什么要整合Spring和MyBatis?步骤一:添加依赖步骤二:配置数据源步骤三:配置MyBatis步骤四:创建Mapper接口和XML文件步骤五:使用Mapper接口拓展:事务管理 🎉通过Spring整合…