文章目录
- 排序的概念
- 直接插入排序
- 希尔排序
- 选择排序
- 堆排序
排序的概念
排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。
稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次
序保持不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排
序算法是稳定的;否则称为不稳定的。
内部排序:数据元素全部放在内存中的排序。
外部排序:数据元素太多不能同时放在内存中,根据排序过程的要求不能在内外存之间移动数据的排序。
直接插入排序
直接插入排序是一种简单的插入排序法,其基本思想是:把待排序的记录按其关键码值的大小逐个插入到一个已经排好序的有序序列中,直到所有的记录插入完为止,得到一个新的有序序列 。
实际中我们玩扑克牌时,就用了插入排序的思想
当插入第i(i>=1)个元素时,前面的array[0],array[1],…,array[i-1]已经排好序,此时用array[i]的排序码与array[i-1],array[i-2],…的排序码顺序进行比较,找到插入位置即将array[i]插入,原来位置上的元素顺序后移.。
void InsrtSort(int* a, int n)
{
for (int i = 0; i < n - 1; i++)
{
int end=i;
int tmp = a[end + 1];
while (end >= 0)
{
if (tmp < a[end])
{
a[end + 1] = a[end];
end--;
}
else
{
break;
}
}
a[end+1] = tmp;
}
}
直接插入排序的特性总结:
- 元素集合越接近有序,直接插入排序算法的时间效率越高
- 时间复杂度:
O(N^2)
- 空间复杂度:
O(1)
,它是一种稳定的排序算法- 稳定性:稳定
稳定性在排序的概念当中也是介绍到了·,具体就是例如数组当中有两个相同的数,在排完序之后两个数的前后关系是没有变的,这就属于稳定,如果变了就是不稳定。
希尔排序
当我们学习过直接插入排序就可以发现当数组逆序时想要排序是非常麻烦的,而对于数组相对有序就会非常的友好,希尔排序就是用来解决直接插入排序的弊端。
希尔排序法又称缩小增量法。希尔排序法的基本思想是:先选定一个整数,把待排序文件中所有记录分成个组,所有距离为的记录分在同一组内,并对每一组内的记录进行排序。然后,取,重复上述分组和排序的工 作。当到达=1时,所有记录在统一组内排好序。
将希尔排序分为两部分:先进行预排序之后再进行直接插入排序·,当排升序时,可以理解为预排序将大的数更快的移到后面。
升序:
1.gap越大,大的数就越快得到后面,小的数也就越快的到前面,也就越不接近有序。
2.gap越小,数据跳动的越慢,越接近有序。
void ShellSort(int* a, int n)
{
int gap = n;
//gap>1预排序
//gap==1直接插入排序
while (gap > 1)
{
gap = gap / 3 + 1;
for (int i = 0; i < n - gap; i++)
{
int end = i;
int tmp = a[end + gap];
while (end >= 0)
{
if (tmp < a[end])
{
a[end + gap] = a[end];
end-=gap;
}
else
{
break;
}
}
a[end + gap] = tmp;
}
}
}
希尔排序的特性总结:
- 希尔排序是对直接插入排序的优化。
- 当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,这样就会很快。这样整体而言,可以达到优化的效果。我们实现后可以进行性能测试的对比。
- 希尔排序的时间复杂度不好计算,因为gap的取值方法很多,导致很难去计算,因此在好些树中给出的希尔排序的时间复杂度都不固定:
因为咋们的gap是按照Knuth提出的方式取值的,而且Knuth进行了大量的试验统计,我们暂时就按照:O(N^1.3)
来算。也可以从O(N*logN)
到O(N^2)
空间复杂度:O(1)
- 稳定性:不稳定
选择排序
选择排序基本思想:
每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完 。
选择排序:
在元素集合array[i]–array[n-1]中选择关键码最大(小)的数据元素
若它不是这组元素中的最后一个(第一个)元素,则将它与这组元素中的最后一个(第一个)元素交换在剩余的array[i]–array[n-2](array[i+1]–array[n-1])集合中,重复上述步骤,直到集合剩余1个元素。
选择排序与直接插入排序好坏
相比之下插入排序更好,当数据处于有序或者接近有序的情况下,效率会得到提升。
他的适应性更强。
而选择排序任何情况下都是O(N^2)。
void SelectSort(int* a, int n)
{
int begin = 0;
int end = n - 1;
while (end > begin)
{
int mini = begin;
int maxi = begin;
for (int i = begin + 1; i <= end; i++)
{
if (a[i] < a[mini])
{
mini = i;
}
if (a[i] > a[maxi])
{
maxi = i;
}
}
swap(&a[begin],&a[mini]);
if (maxi == begin)
{
maxi = mini;
}
swap(&a[end],&a[maxi]);
begin++;
end--;
}
}
选择排序的特性总结:
- 直接选择排序思考非常好理解,但是效率不是很好。实际中很少使用
- 时间复杂度:
O(N^2)
- 空间复杂度:
O(1)
- 稳定性:不稳定
堆排序
堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。它是通过堆来进行选择数据。需要注意的是排升序要建大堆,排降序建小堆。
void AdjustDown(int* a, int n, int parent)
{
int child = parent * 2 + 1;
while (child < n)
{
// 确认child指向大的那个孩子
if (child + 1 < n && a[child + 1] > a[child])
{
++child;
}
// 1、孩子大于父亲,交换,继续向下调整
// 2、孩子小于父亲,则调整结束
if (a[child] > a[parent])
{
swap(&a[child], &a[parent]);
parent = child;
child = parent * 2 + 1;
}
else
{
break;
}
}
}
// O(N*logN)
void HeapSort(int* a, int n)
{
// 向下调整建堆 -- O(N)
// 升序:建大堆
for (int i = (n - 1 - 1) / 2; i >= 0; --i)
{
AdjustDown(a, n, i);
}
// O(N*logN)
int end = n - 1;
while (end > 0)
{
swap(&a[0], &a[end]);
AdjustDown(a, end, 0);
--end;
}
}
堆排序排序的特性总结:
- 堆排序使用堆来选数,效率就高了很多。
- 时间复杂度:O(N*logN)
- 空间复杂度:O(1)
- 稳定性:不稳定
最后:文章有什么不对的地方或者有什么更好的写法欢迎大家在评论区指出 |