section header

news2025/1/8 21:44:03

section header table 是一个section header的集合,每个section header是一个描述section的结构体。在同一个ELF文件中,每个section header大小是相同的。

每个section都有一个section header描述它,但是一个section header可能在文件中没有对应的section,因为有的section是不占用文件空间的。每个section在文件中是连续的字节序列。section之间不会有重叠。

一个目标文件中可能有未覆盖到的空间,比如各种header和section都没有覆盖到。这部分字节的内容是未指定的,也是没有意义的。

1. section header定义

section header结构体的定义可以在 /usr/include/elf.h 中找到。

/* Section header.  */

typedef struct
{
  Elf32_Word	sh_name;		/* Section name (string tbl index) */
  Elf32_Word	sh_type;		/* Section type */
  Elf32_Word	sh_flags;		/* Section flags */
  Elf32_Addr	sh_addr;		/* Section virtual addr at execution */
  Elf32_Off	sh_offset;		/* Section file offset */
  Elf32_Word	sh_size;		/* Section size in bytes */
  Elf32_Word	sh_link;		/* Link to another section */
  Elf32_Word	sh_info;		/* Additional section information */
  Elf32_Word	sh_addralign;		/* Section alignment */
  Elf32_Word	sh_entsize;		/* Entry size if section holds table */
} Elf32_Shdr;

typedef struct
{
  Elf64_Word	sh_name;		/* Section name (string tbl index) */
  Elf64_Word	sh_type;		/* Section type */
  Elf64_Xword	sh_flags;		/* Section flags */
  Elf64_Addr	sh_addr;		/* Section virtual addr at execution */
  Elf64_Off	sh_offset;		/* Section file offset */
  Elf64_Xword	sh_size;		/* Section size in bytes */
  Elf64_Word	sh_link;		/* Link to another section */
  Elf64_Word	sh_info;		/* Additional section information */
  Elf64_Xword	sh_addralign;		/* Section alignment */
  Elf64_Xword	sh_entsize;		/* Entry size if section holds table */
} Elf64_Shdr;

![在这里插入图片描述](https://img-blog.csdnimg.cn/005ba47f8a994293abc4efa31c2fd8f4.png
下面我们依次讲解结构体各个字段:
(1)sh_name,4字节,是一个索引值,在shstrtable(section header string table,包含section name的字符串表,也是一个section)中的索引。第二讲介绍ELF文件头时,里面专门有一个字段e_shstrndx,其含义就是shstrtable对应的section header在section header table中的索引。

(2)sh_type,4字节,描述了section的类型,常见的取值如下:

  • SHT_NULL 0,表明section header无效,没有关联的section。
  • SHT_PROGBITS 1,section包含了程序需要的数据,格式和含义由程序解释。
  • SHT_SYMTAB 2, 包含了一个符号表。当前,一个ELF文件中只有一个符号表。SHT_SYMTAB提供了用于(link editor)链接编辑的符号,当然这些符号也可能用于动态链接。这是一个完全的符号表,它包含许多符号。
  • SHT_STRTAB 3,包含一个字符串表。一个对象文件包含多个字符串表,比如.strtab(包含符号的名字)和.shstrtab(包含section的名称)。
  • SHT_RELA 4,重定位节,包含relocation入口,参见Elf32_Rela。一个文件可能有多个Relocation Section。比如.rela.text,.rela.dyn。
  • SHT_HASH 5,这样的section包含一个符号hash表,参与动态连接的目标代码文件必须有一个hash表。目前一个ELF文件中只包含一个hash表。讲链接的时候再细讲。
  • SHT_DYNAMIC 6,包含动态链接的信息。目前一个ELF文件只有一个DYNAMIC section。
  • SHT_NOTE 7,note section, 以某种方式标记文件的信息,以后细讲。
  • SHT_NOBITS 8,这种section不含字节,也不占用文件空间,section header中的sh_offset字段只是概念上的偏移。
  • SHT_REL 9, 重定位节,包含重定位条目。和SHT_RELA基本相同,两者的区别在后面讲重定位的时候再细讲。
  • SHT_SHLIB 10,保留,语义未指定,包含这种类型的section的elf文件不符合ABI。
  • SHT_DYNSYM 11, 用于动态连接的符号表,推测是symbol table的子集。
  • SHT_LOPROC 0x70000000 到 SHT_HIPROC 0x7fffffff,为特定于处理器的语义保留。
  • SHT_LOUSER 0x80000000 and SHT_HIUSER 0xffffffff,指定了为应用程序保留的索引的下界和上界,这个范围内的索引可以被应用程序使用。

(3)sh_flags, 32位占4字节, 64位占8字节。包含位标志,用 readelf -S 可以看到很多标志。常用的有:

  • SHF_WRITE 0x1,进程执行的时候,section内的数据可写。
  • SHF_ALLOC 0x2,进程执行的时候,section需要占据内存。
  • SHF_EXECINSTR 0x4,节内包含可以执行的机器指令。
  • SHF_STRINGS 0x20,包含0结尾的字符串。
  • SHF_MASKOS 0x0ff00000,这个mask为OS特定的语义保留8位。
  • SHF_MASKPROC 0xf0000000,这个mask包含的所有位保留(也就是最高字节的高4位),为处理器相关的语义使用。

(4)sh_addr, 对32位来说是4字节,64位是8字节。如果section会出现在进程的内存映像中,给出了section第一字节的虚拟地址。

(5)sh_offset,对于32位来说是4字节,64位是8字节。section相对于文件头的字节偏移。对于不占文件空间的section(比如SHT_NOBITS),它的sh_offset只是给出了section逻辑上的位置。

(6)sh_size,section占多少字节,对于SHT_NOBITS类型的section,sh_size没用,其值可能不为0,但它也不占文件空间。

(7)sh_link,含有一个section header的index,该值的解释依赖于section type。

  • 如果是SHT_DYNAMIC,sh_link是string table的section header index,也就是说指向字符串表。
  • 如果是SHT_HASH,sh_link指向symbol table的section header index,hash table应用于symbol table。
  • 如果是重定位节SHT_REL或SHT_RELA,sh_link指向相应符号表的section header index。
  • 如果是SHT_SYMTAB或SHT_DYNSYM,sh_link指向相关联的符号表,暂时不解。
  • 对于其它的section type,sh_link的值是SHN_UNDEF

(8)sh_info,存放额外的信息,值的解释依赖于section type。

  • 如果是SHT_REL和SHT_RELA类型的重定位节,sh_info是应用relocation的节的节头索引。
  • 如果是SHT_SYMTAB和SHT_DYNSYM,sh_info是第一个non-local符号在符号表中的索引。推测local symbol在前面,non-local symbols紧跟在后面,所以文档中也说,sh_info是最后一个本地符号的在符号表中的索引加1。
  • 对于其它类型的section,sh_info是0。

(9)sh_addralign,地址对齐,如果一个section有一个doubleword字段,系统在载入section时的内存地址必须是doubleword对齐。也就是说sh_addr必须是sh_addralign的整数倍。只有2的正整数幂是有效的。0和1说明没有对齐约束。

(10)sh_entsize,有些section包含固定大小的记录,比如符号表。这个值给出了每个记录大小。对于不包含固定大小记录的section,这个值是0。

2. 系统预定义的section name

系统预定义了一些节名(以.开头),这些节有其特定的类型和含义。

  • .bss:包含程序运行时未初始化的数据(全局变量和静态变量)。当程序运行时,这些数据初始化为0。 其类型为SHT_NOBITS,表示不占文件空间。SHF_ALLOC + SHF_WRITE,运行时要占用内存的。
  • .comment 包含版本控制信息(是否包含程序的注释信息?不包含,注释在预处理时已经被删除了)。类型为SHT_PROGBITS。
  • .data和.data1,包含初始化的全局变量和静态变量。 类型为SHT_PROGBITS,标志为SHF_ALLOC + SHF_WRITE(占用内存,可写)。
  • .debug,包含了符号调试用的信息,我们要想用gdb等工具调试程序,需要该类型信息,类型为SHT_PROGBITS。
  • .dynamic,类型SHT_DYNAMIC,包含了动态链接的信息。标志SHF_ALLOC,是否包含SHF_WRITE和处理器有关。
  • .dynstr,SHT_STRTAB,包含了动态链接用的字符串,通常是和符号表中的符号关联的字符串。标志 SHF_ALLOC
  • .dynsym,类型SHT_DYNSYM,包含动态链接符号表, 标志SHF_ALLOC。
  • .fini,类型SHT_PROGBITS,程序正常结束时,要执行该section中的指令。标志SHF_ALLOC + SHF_EXECINSTR(占用内存可执行)。现在ELF还包含.fini_array section。
  • .got,类型SHT_PROGBITS,全局偏移表(global offset table),以后会重点讲。
  • .hash,类型SHT_HASH,包含符号hash表,以后细讲。标志SHF_ALLOC。
  • .init,SHT_PROGBITS,程序运行时,先执行该节中的代码。SHF_ALLOC + SHF_EXECINSTR,和.fini对应。现在ELF还包含.init_array section。
  • .interp,SHT_PROGBITS,该节内容是一个字符串,指定了程序解释器的路径名。如果文件中有一个可加载的segment包含该节,属性就包含SHF_ALLOC,否则不包含。
  • .line,SHT_PROGBITS,包含符号调试的行号信息,描述了源程序和机器代码的对应关系。gdb等调试器需要此信息。
  • .note Note Section, 类型SHT_NOTE,以后单独讲。
  • .plt 过程链接表(Procedure Linkage Table),类型SHT_PROGBITS,以后重点讲。
  • .relNAME,类型SHT_REL, 包含重定位信息。如果文件有一个可加载的segment包含该section,section属性将包含SHF_ALLOC,否则不包含。NAME,是应用重定位的节的名字,比如.text的重定位信息存储在.rel.text中。
  • .relaname 类型SHT_RELA,和.rel相同。SHT_RELA和SHT_REL的区别,会在讲重定位的时候说明。
  • .rodata和.rodata1。类型SHT_PROGBITS, 包含只读数据,组成不可写的段。标志SHF_ALLOC。
  • .shstrtab,类型SHT_STRTAB,包含section的名字。有读者可能会问:section header中不是已经包含名字了吗,为什么把名字集中存放在这里? sh_name 包含的是.shstrtab 中的索引,真正的字符串存储在.shstrtab中。那么section names为什么要集中存储?我想是这样:如果有相同的字符串,就可以共用一块存储空间。如果字符串存在包含关系,也可以共用一块存储空间。
  • .strtab SHT_STRTAB,包含字符串,通常是符号表中符号对应的变量名字。如果文件有一个可加载的segment包含该section,属性将包含SHF_ALLOC。字符串以\0结束, section以\0开始,也以\0结束。一个.strtab可以是空的,它的sh_size将是0。针对空字符串表的非0索引是允许的。
  • symtab,类型SHT_SYMTAB,Symbol Table,符号表。包含了定位、重定位符号定义和引用时需要的信息符号表是一个数组,Index 0 第一个入口,它的含义是undefined symbol index, STN_UNDEF。如果文件有一个可加载的segment包含该section,属性将包含SHF_ALLOC。
    在这里插入图片描述

3. 练习:读取section names

示例:从一个ELF文件中读取存储section name的字符串表。前面讲过,该字符串表也是一个section,section header table中有其对应的section header,并且ELF文件头中给出了节名字符串表对应的section header的索引,e_shstrndx。

我们的思路是这样:

从ELF header中读取section header table的起始位置,每个section header的大小,以及节名字符串表对应section header的索引。
计算section_header_table_offset + section_header_size * e_shstrndx 就是节名字符串表对应section header的偏移。
读取section header,可以从中得到节名字符串表在文件中的偏移和大小。
把节名字符串表读取到内存中,打印其内容。
代码如下:

/* 64位ELF文件读取section name string table */
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>

int main(int argc, char *argv[])
{
    /* 打开本地的ELF可执行文件hello */
    FILE *fp = fopen("./hello", "rb");
    if(!fp) {
        perror("open ELF file");
        exit(1);
    }

    /* 1. 通过读取ELF header得到section header table的偏移 */
    /* for 64 bit ELF,
       e_ident(16) + e_type(2) + e_machine(2) +
       e_version(4) + e_entry(8) + e_phoff(8) = 40 */
    fseek(fp, 40, SEEK_SET);
    uint64_t sh_off;
    int r = fread(&sh_off, 1, 8, fp);
    if (r != 8) {
        perror("read section header offset");
        exit(2);
    }
    /* 得到的这个偏移值,可以用`reaelf -h hello`来验证是否正确 */
    printf("section header offset in file: %ld (0x%lx)\n", sh_off, sh_off);

    /* 2. 读取每个section header的大小e_shentsize,
       section header的数量e_shnum,
       以及对应section name字符串表的section header的索引e_shstrndx
       得到这些值后,都可以用`readelf -h hello`来验证是否正确 */
    /* e_flags(4) + e_ehsize(2) + e_phentsize(2) + e_phnum(2) = 10 */
    fseek(fp, 10, SEEK_CUR);
    uint16_t sh_ent_size;            /* 每个section header的大小 */
    r = fread(&sh_ent_size, 1, 2, fp);
    if (r != 2) {
        perror("read section header entry size");
        exit(2);
    }
    printf("section header entry size: %d\n", sh_ent_size);

    uint16_t sh_num;            /* section header的数量 */
    r = fread(&sh_num, 1, 2, fp);
    if (r != 2) {
        perror("read section header number");
        exit(2);
    }
    printf("section header number: %d\n", sh_num);

    uint16_t sh_strtab_index;   /* 节名字符串表对应的节头的索引 */
    r = fread(&sh_strtab_index, 1, 2, fp);
    if (r != 2) {
        perror("read section header string table index");
        exit(2);
    }
    printf("section header string table index: %d\n", sh_strtab_index);

    /* 3. read section name string table offset, size */
    /* 先找到节头字符串表对应的section header的偏移位置 */
    fseek(fp, sh_off + sh_strtab_index * sh_ent_size, SEEK_SET);
    /* 再从section header中找到节头字符串表的偏移 */
    /* sh_name(4) + sh_type(4) + sh_flags(8) + sh_addr(8) = 24 */
    fseek(fp, 24, SEEK_CUR);
    uint64_t str_table_off;
    r = fread(&str_table_off, 1, 8, fp);
    if (r != 8) {
        perror("read section name string table offset");
        exit(2);
    }
    printf("section name string table offset: %ld\n", str_table_off);

    /* 从section header中找到节头字符串表的大小 */
    uint64_t str_table_size;
    r = fread(&str_table_size, 1, 8, fp);
    if (r != 8) {
        perror("read section name string table size");
        exit(2);
    }
    printf("section name string table size: %ld\n", str_table_size);

    /* 动态分配内存,把节头字符串表读到内存中 */
    char *buf = (char *)malloc(str_table_size);
    if(!buf) {
        perror("allocate memory for section name string table");
        exit(3);
    }
    fseek(fp, str_table_off, SEEK_SET);
    r = fread(buf, 1, str_table_size, fp);
    if(r != str_table_size) {
        perror("read section name string table");
        free(buf);
        exit(2);
    }
    uint16_t i;
    for(i = 0; i < str_table_size; ++i) {
        /* 如果节头字符串表中的字节是0,就打印`\0` */
        if (buf[i] == 0)
            printf("\\0");
        else
            printf("%c", buf[i]);
    }
    printf("\n");
    free(buf);
    fclose(fp);
    return 0;
}

把以上代码存为chap3_read_section_names.c,执行gcc -Wall -o secnames chap3_read_section_names.c进行编译,输出的执行文件名叫secnames。执行secnames,输出如下:

./secnames
section header offset in file: 14768 (0x39b0)
section header entry size: 64
section header number: 29
section header string table index: 28
section name string table offset: 14502
section name string table size: 259
\0.symtab\0.strtab\0.shstrtab\0.interp\0.note.ABI-tag\0.note.gnu.build-id\0.gnu.hash\0.dynsym\0.dynstr\0.gnu.version\0.gnu.version_r\0.rela.dyn\0.rela.plt\0.init\0.text\0.fini\0.rodata\0.eh_frame_hdr\0.eh_frame\0.init_array\0.fini_array\0.dynamic\0.got\0.got.plt\0.data\0.bss\0.comment\0

可以发现,节头字符串表以\0开始,以\0结束。如果一个section的name字段指向0,则他指向的字节值是0,则它没有名称,或名称是空。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1242694.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

小白也看的懂的爬取视频操作

1.获取一段视频 可以直接从抖音下&#xff0c;也可以从b站上爬取&#xff08;注意法律谢谢&#xff09; 保护原创 b站的视频 直接复制网址链接到哔哩哔哩(bilibili)视频解析下载 - 保存B站视频到手机、电脑 去就好了&#xff0c;

Python计算DICOM图像两点真实距离

Python计算DICOM图像两点真实距离 对比测量结果图Code对比测量结果图 DICOM阅读器(小赛看看)测量结果 python测量结果 Code import numpy as np import cv2 import math import pydicom from pydicom.pixel_data_handlers.util import convert_color_spaceds = pydicom.dc…

YOLOv5 分类模型 预处理 OpenCV实现

YOLOv5 分类模型 预处理 OpenCV实现 flyfish YOLOv5 分类模型 预处理 PIL 实现 YOLOv5 分类模型 OpenCV和PIL两者实现预处理的差异 YOLOv5 分类模型 数据集加载 1 样本处理 YOLOv5 分类模型 数据集加载 2 切片处理 YOLOv5 分类模型 数据集加载 3 自定义类别 YOLOv5 分类模型…

OpenCV入门10——特征点检测与匹配

文章目录 特征检测的基本概念Harris角点检测Shi-Tomasi角点检测SIFT关键点检测SIFT计算描述子SURF特征检测OBR特征检测暴力特征匹配FLANN特征匹配实战flann特征匹配图像查找图像拼接基础知识图像拼接实战 特征点检测与匹配是计算机视觉中非常重要的内容。不是所有图像操作都是对…

腾讯又出王炸产品!使用混元大模型进行数据报表测试

最近腾讯出了自己的大模型&#xff0c;命名混元。 现在已经开始内测&#xff0c;感谢腾讯小伙伴卢晓明同学帮我们提前申请到了内测机会&#xff0c;接下来我们用腾讯混元大模型与实际工作结合&#xff0c;开始我的报表测试之旅。 腾讯混元大模型官方入口:https://hunyuan.ten…

深入了解前馈网络、CNN、RNN 和 Hugging Face 的 Transformer 技术!

一、说明 本篇在此对自然语言模型做一个简短总结&#xff0c;从CNN\RNN\变形金刚&#xff0c;和抱脸的变形金刚库说起。 二、基本前馈神经网络&#xff1a; 让我们分解一个基本的前馈神经网络&#xff0c;也称为多层感知器&#xff08;MLP&#xff09;。此代码示例将&#xff1…

玻色量子“揭秘”之集合划分问题与QUBO建模

摘要&#xff1a;集合划分问题&#xff08;Set Partitioning Problem&#xff09;是一种组合优化问题&#xff0c;其中给定一个集合S和其若干个不同的子集S1&#xff0c;S2&#xff0c;...&#xff0c;Sn后&#xff0c;需要找到子集的有效组合&#xff0c;使得集合S的每个元素正…

高通Camera HAL3: CamX、Chi-CDK要点

目录 一、概述 二、目录 三、CamX组件之前的关系 一、概述 高通CamX架构是高通实现的相机HAL3架构&#xff0c;被各OEM厂商广泛采用。 二、目录 代码位于vendor/qcom/proprietary下&#xff1a; camx&#xff1a;通用功能性接口的代码实现集合chi-cdk&#xff1a;可定制化…

shell循环语句 for while until

目录 什么是循环语句 概念 for循环 格式 while循环 格式 until 循环 格式 实验 for &#xff08;1&#xff09;计算1到100的和 ​编辑 &#xff08;2&#xff09;100以内的偶数 &#xff08;从0开始到100结束&#xff0c;每次加2步 打印的都是偶数&#xff09; &…

ELK架构

经典的ELK 经典的ELK主要是由Filebeat Logstash Elasticsearch Kibana组成&#xff0c;如下图&#xff1a;&#xff08;早期的ELK只有Logstash Elasticsearch Kibana&#xff09; 此架构主要适用于数据量小的开发环境&#xff0c;存在数据丢失的危险。 整合消息队列Ngin…

Spring框架学习 -- 读取和存储Bean对象

目录 &#x1f680;&#x1f680; 回顾 getBean()方法的使用 根据name来获取对象 再谈getBean() (1) 配置扫描路径 (2) 添加注解 ① spring注解简介 ② 对类注解的使用 ③ 注解Bean对象的命名问题 ④ 方法加Bean注解 (3) Bean 注解的重命名 (4) 获取Bean对象 -- …

投标文件的注意事项

一、检查标书 1.1有时候标书需要从别的地方复制黏贴文件&#xff0c;记住复制内容可以&#xff0c;但是不要复制“落款和时间”的格式&#xff0c;落款和时间的格式借鉴你的招标文件中给响应文件格式的落款和时间&#xff0c;切记&#xff01; 1.2检查标书是否有空页&#xf…

数据中心运维管理:从人工到智能需要走几步?

一切的变化来自于数据中心规模、复杂度、设备多样性的挑战&#xff0c;将运维平台的重要性推向历史高点。 此外&#xff0c;基于业务连续性方面的考虑&#xff0c;分布式数据中心成为越来越多客户的选择。 一、数据中心面临的挑战 运维管理分散&#xff0c;缺乏统一的管理 I…

Linux:设置Ubuntu的root用户密码

执行以下命令&#xff1a; 给root用户设置密码 sudo passwd 输入两次密码 切换root su root 退出root用户 exit

地埋式积水监测仪厂家直销推荐,致力于积水监测

地埋式积水监测仪是一种高科技设备&#xff0c;能够实时监测地面积水深度&#xff0c;并及时发出预警信息&#xff0c;有效避免因积水而产生的安全隐患。这种智能监测仪可以安装在城市道路、立交桥、地下车库等易积水地势较低的地方&#xff0c;以确保及时监测特殊地段的积水&a…

【Sorted Set】Redis常用数据类型: ZSet [使用手册]

个人简介&#xff1a;Java领域新星创作者&#xff1b;阿里云技术博主、星级博主、专家博主&#xff1b;正在Java学习的路上摸爬滚打&#xff0c;记录学习的过程~ 个人主页&#xff1a;.29.的博客 学习社区&#xff1a;进去逛一逛~ 目录 ⑤Redis Zset 操作命令汇总1. zadd 添加或…

APM工具skywalking部署

一 整体架构 整个架构&#xff0c;分成上、下、左、右四部分&#xff1a; 上部分 Agent &#xff1a;负责从应用中&#xff0c;收集链路信息&#xff0c;发送给 SkyWalking OAP 服务器。目前支持 SkyWalking、Zikpin、Jaeger 等提供的 Tracing 数据信息。而我们目前采用的是&…

css渐变详解(重复性线性渐变、径向渐变、重复性径向渐变的使用)

目录 线性渐变 重复性线性渐变 径向渐变 重复性径向渐变的使用 线性渐变 线性渐变是向下、向上、向左、向右、对角方向的颜色渐变。 其语法格式为&#xff1a; background-image: linear-gradient(side-or-corner|angle, linear-color-stop); 参数说明如下&#xff1a; …

mongo DB -- aggregate分组查询后字段展示

一、分组查询 在mongoDB中可以使用aggregate中的$group操作对集合中的文档进行分组,但是查询后的数据不显示其他字段,只显示分组字段 aggregate进行分组示例 db.collection.aggregate([{$group: {_id: "$field"}},]) 查询后显示 展开只显示两个字段 二、显示所有字段…

10.分组循环练习题

分组循环 https://leetcode.cn/problems/longest-even-odd-subarray-with-threshold/solutions/2528771/jiao-ni-yi-ci-xing-ba-dai-ma-xie-dui-on-zuspx/?envTypedaily-question&envId2023-11-16 分组循环 适用场景&#xff1a; 按照题目要求&#xff0c;数组会被分割成若…