STM32存储左右互搏 SPI总线FATS文件读写FLASH W25QXX

news2024/9/22 21:35:46

STM32存储左右互搏 SPI总线FATS文件读写FLASH W25QXX

FLASH是常用的一种非易失存储单元,W25QXX系列Flash有不同容量的型号,如W25Q64的容量为64Mbit,也就是8MByte。这里介绍STM32CUBEIDE开发平台HAL库实现FATS文件操作W25Q各型号FLASH的例程。非FATS直接操作W25QXX FLASH的方式见《STM32存储左右互搏 SPI总线读写FLASH W25QXX》

W25QXX介绍

W25QXX的SOIC封装如下所示,在采用SPI而不是QUAL SPI时,管脚定义为:
在这里插入图片描述
即由片选(/CS), 时钟(CLK), 数据输出(DO)和数据输入(DI)的组成4线SPI信号接口。VCC和GND提供电源和接地连接。

例程采用STM32H750VBT6芯片, FLASH可以选择为8/16/32/64/128/256/512/1024 Mbit的W25Q型号。

STM32工程配置

首先建立基本工程并设置时钟:
在这里插入图片描述

在这里插入图片描述

选择硬件接口SPI2为FLASH连接接口,片选采用软件代码控制方式,单独设置为输出GPIO:
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
不采用中断和DMA方式,需要时可以再添加,调用相对应的操作库函数及补充中断处理函数即可。
在这里插入图片描述
在这里插入图片描述
配置FATS参数:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
配置UART1用于控制打印:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
保存并生成初始工程代码:
在这里插入图片描述

STM32工程代码

UART串口printf打印输出实现参考:STM32 UART串口printf函数应用及浮点打印代码空间节省 (HAL)

建立W25Q访问的库头文件W25QXX.h:

#ifndef INC_W25QXX_H_
#define INC_W25QXX_H_

#include "main.h"

uint8_t SPI2_ReadWriteByte(uint8_t TxData);

//W25QXX serial chip list:
#define W25Q80_ID 	0XEF13
#define W25Q16_ID 	0XEF14
#define W25Q32_ID 	0XEF15
#define W25Q64_ID 	0XEF16
#define W25Q128_ID	0XEF17
#define W25Q256_ID  0XEF18
#define W25Q512_ID  0XEF19
#define W25Q1024_ID 0XEF20

extern uint16_t W25QXX_TYPE; //To indicate W25QXX type used in this procedure

//W25QXX chip select control function
#define W25QXX_CS(n)  ( n ? HAL_GPIO_WritePin(GPIOB, GPIO_PIN_12, GPIO_PIN_SET) : HAL_GPIO_WritePin(GPIOB, GPIO_PIN_12, GPIO_PIN_RESET) )

//command table for W25QXX access
#define W25X_WriteEnable		0x06
#define W25X_WriteDisable		0x04
#define W25X_ReadStatusReg1		0x05
#define W25X_ReadStatusReg2		0x35
#define W25X_ReadStatusReg3		0x15
#define W25X_WriteStatusReg1    0x01
#define W25X_WriteStatusReg2    0x31
#define W25X_WriteStatusReg3    0x11
#define W25X_ReadData			0x03
#define W25X_FastReadData		0x0B
#define W25X_FastReadDual		0x3B
#define W25X_PageProgram		0x02
#define W25X_BlockErase			0xD8
#define W25X_SectorErase		0x20
#define W25X_ChipErase			0xC7
#define W25X_PowerDown			0xB9
#define W25X_ReleasePowerDown	0xAB
#define W25X_DeviceID			0xAB
#define W25X_ManufactDeviceID	0x90
#define W25X_JedecDeviceID		0x9F
#define W25X_Enable4ByteAddr    0xB7
#define W25X_Exit4ByteAddr      0xE9

uint8_t W25QXX_Init(void);
uint16_t  W25QXX_ReadID(void);  	    		  //Read W25QXX ID
uint8_t W25QXX_ReadSR(uint8_t reg_num);           //Read from status register
void W25QXX_4ByteAddr_Enable(void);               //Enable 4-byte address mode
void W25QXX_Write_SR(uint8_t reg_num,uint8_t d);  //Write to status register
void W25QXX_Write_Enable(void);  		          //Write enable
void W25QXX_Write_Disable(void);		          //Write disable
void W25QXX_Write_NoCheck(uint8_t* pBuffer,uint32_t WriteAddr,uint16_t NumByteToWrite); //Write operation w/o check
void W25QXX_Read(uint8_t* pBuffer,uint32_t ReadAddr,uint16_t NumByteToRead);            //Read operation
void W25QXX_Write(uint8_t* pBuffer,uint32_t WriteAddr,uint16_t NumByteToWrite);         //Write operation
void W25QXX_Erase_Chip(void);    	  	                                                //Erase whole chip
void W25QXX_Erase_Sector(uint32_t Sector_Num);	                                        //Erase sector in specific sector number
void W25QXX_Wait_Busy(void);           	       //Wait idle status before next operation
void W25QXX_PowerDown(void);        	       //Enter power-down mode
void W25QXX_WAKEUP(void);				       //Wake-up


#endif /* INC_W25QXX_H_ */

建立W25Q访问的库源文件W25QXX.c:

#include "W25QXX.h"

extern SPI_HandleTypeDef hspi2;
extern void PY_Delay_us_t(uint32_t Delay);
//Write and read one byte in SPI2
uint8_t SPI2_ReadWriteByte(uint8_t TxData)
{
    uint8_t Rxdata;
    HAL_SPI_TransmitReceive(&hspi2,&TxData,&Rxdata,1, 1000);
 	return Rxdata;
}

uint16_t W25QXX_TYPE=W25Q64_ID;

//W25QXX initialization
uint8_t W25QXX_Init(void)
{
    uint8_t temp;

	W25QXX_CS(1);

	W25QXX_TYPE=W25QXX_ReadID();

	if((W25QXX_TYPE==W25Q256_ID)||(W25QXX_TYPE==W25Q512_ID)||(W25QXX_TYPE==W25Q1024_ID))
    {
        temp=W25QXX_ReadSR(3);              //read status register 3
        if((temp&0X01)==0)			        //judge address mode and configure to 4-byte address mode
		{
			W25QXX_CS(0);
			SPI2_ReadWriteByte(W25X_Enable4ByteAddr);
			W25QXX_CS(1);
		}
    }

    if((W25QXX_TYPE==0x0000)||(W25QXX_TYPE==0xFFFF)) return 0;
    else return 1;
}

//Read status registers of W25QXX
//reg_num: register number from 1 to 3
//return: value of selected register

//SR1 (default 0x00):
//BIT7  6   5   4   3   2   1   0
//SPR   RV  TB BP2 BP1 BP0 WEL BUSY
//SPR: default 0, status register protection bit used with WP
//TB,BP2,BP1,BP0: FLASH region write protection configuration
//WEL: write enable lock
//BUSY: busy flag (1: busy; 0: idle)

//SR2:
//BIT7  6   5   4   3   2   1   0
//SUS   CMP LB3 LB2 LB1 (R) QE  SRP1

//SR3:
//BIT7      6    5    4   3   2   1   0
//HOLD/RST  DRV1 DRV0 (R) (R) WPS ADP ADS
uint8_t W25QXX_ReadSR(uint8_t reg_num)
{
	uint8_t byte=0,command=0;
    switch(reg_num)
    {
        case 1:
            command=W25X_ReadStatusReg1;    //To read status register 1
            break;
        case 2:
            command=W25X_ReadStatusReg2;    //To read status register 2
            break;
        case 3:
            command=W25X_ReadStatusReg3;    //To read status register 3
            break;
        default:
            command=W25X_ReadStatusReg1;
            break;
    }
	W25QXX_CS(0);
	SPI2_ReadWriteByte(command);    //send command
	byte=SPI2_ReadWriteByte(0Xff);  //read data
	W25QXX_CS(1);
	return byte;
}

//Write status registers of W25QXX
//reg_num: register number from 1 to 3
//d: data for updating status register
void W25QXX_Write_SR(uint8_t reg_num,uint8_t d)
{
    uint8_t command=0;
    switch(reg_num)
    {
        case 1:
            command=W25X_WriteStatusReg1;    //To write status register 1
            break;
        case 2:
            command=W25X_WriteStatusReg2;    //To write status register 2
            break;
        case 3:
            command=W25X_WriteStatusReg3;    //To write status register 3
            break;
        default:
            command=W25X_WriteStatusReg1;
            break;
    }
	W25QXX_CS(0);
	SPI2_ReadWriteByte(command);            //send command
	SPI2_ReadWriteByte(d);                  //write data
	W25QXX_CS(1);
}
//W25QXX write enable
void W25QXX_Write_Enable(void)
{
	W25QXX_CS(0);
    SPI2_ReadWriteByte(W25X_WriteEnable);
	W25QXX_CS(1);
}
//W25QXX write disable
void W25QXX_Write_Disable(void)
{
	W25QXX_CS(0);
    SPI2_ReadWriteByte(W25X_WriteDisable);
	W25QXX_CS(1);
}

//Read chip ID
//return:
//0XEF13 for W25Q80
//0XEF14 for W25Q16
//0XEF15 for W25Q32
//0XEF16 for W25Q64
//0XEF17 for W25Q128
//0XEF18 for W25Q256
uint16_t W25QXX_ReadID(void)
{
	uint16_t Temp = 0;
	W25QXX_CS(0);
	SPI2_ReadWriteByte(0x90);          //send command
	SPI2_ReadWriteByte(0x00);
	SPI2_ReadWriteByte(0x00);
	SPI2_ReadWriteByte(0x00);
	Temp|=SPI2_ReadWriteByte(0xFF)<<8; //read high byte data
	Temp|=SPI2_ReadWriteByte(0xFF);    //read low byte data
	W25QXX_CS(1);
	return Temp;
}
//Read W25QXX from specific address for specific byte length
//pBuffer: data buffer
//ReadAddr: specific address
//NumByteToRead: specific byte length (max 65535)
void W25QXX_Read(uint8_t* pBuffer,uint32_t ReadAddr,uint16_t NumByteToRead)
{
 	uint16_t i;
	W25QXX_CS(0);
    SPI2_ReadWriteByte(W25X_ReadData);                   //send read command
    if((W25QXX_TYPE==W25Q256_ID)||(W25QXX_TYPE==W25Q512_ID)||(W25QXX_TYPE==W25Q1024_ID))  //send highest 8-bit address
    {
        SPI2_ReadWriteByte((uint8_t)((ReadAddr)>>24));
    }
    SPI2_ReadWriteByte((uint8_t)((ReadAddr)>>16));       //send 24-bit address
    SPI2_ReadWriteByte((uint8_t)((ReadAddr)>>8));
    SPI2_ReadWriteByte((uint8_t)ReadAddr);
    for(i=0;i<NumByteToRead;i++)
	{
        pBuffer[i]=SPI2_ReadWriteByte(0XFF);             //read data
    }
	W25QXX_CS(1);
}

//Write W25QXX not more than 1 page (256 bytes)
//pBuffer: data buffer
//WriteAddr: specific address
//NumByteToWrite: specific byte length (max 256)
void W25QXX_Write_Page(uint8_t* pBuffer,uint32_t WriteAddr,uint16_t NumByteToWrite)
{
 	uint16_t i;
    W25QXX_Write_Enable();                                       //write enable
	W25QXX_CS(0);
    SPI2_ReadWriteByte(W25X_PageProgram);                        //send write command
    if((W25QXX_TYPE==W25Q256_ID)||(W25QXX_TYPE==W25Q512_ID)||(W25QXX_TYPE==W25Q1024_ID)) //send highest 8-bit address
    {
        SPI2_ReadWriteByte((uint8_t)((WriteAddr)>>24));
    }
    SPI2_ReadWriteByte((uint8_t)((WriteAddr)>>16));               //send 24-bit address
    SPI2_ReadWriteByte((uint8_t)((WriteAddr)>>8));
    SPI2_ReadWriteByte((uint8_t)WriteAddr);
    for(i=0;i<NumByteToWrite;i++)SPI2_ReadWriteByte(pBuffer[i]);  //write data
	W25QXX_CS(1);
	W25QXX_Wait_Busy();
}

//Write W25QXX w/o erase check and w/o byte number restriction
//pBuffer: data buffer
//WriteAddr: specific address
//NumByteToWrite: specific byte length (max 65535)
void W25QXX_Write_NoCheck(uint8_t* pBuffer,uint32_t WriteAddr,uint16_t NumByteToWrite)
{
	uint16_t remained_byte_num_in_page;
	remained_byte_num_in_page=256-WriteAddr%256;                                                       //remained byte number in page
	if( NumByteToWrite <= remained_byte_num_in_page ) remained_byte_num_in_page = NumByteToWrite;      //data can be written in single page
	while(1)
	{
		W25QXX_Write_Page(pBuffer,WriteAddr,remained_byte_num_in_page);
		if(NumByteToWrite==remained_byte_num_in_page)break;                                            //end write operation
	 	else                                                                                           //NumByteToWrite>remained_byte_num_in_page
		{
			pBuffer+=remained_byte_num_in_page;
			WriteAddr+=remained_byte_num_in_page;

			NumByteToWrite-=remained_byte_num_in_page;
			if(NumByteToWrite>256)remained_byte_num_in_page=256;                                       //for whole page write
			else remained_byte_num_in_page=NumByteToWrite; 	                                           //for non-whole page write
		}
	};
}

//Write W25QXX w/ erase after check and w/o byte number restriction
//pBuffer: data buffer
//WriteAddr: specific address
//NumByteToWrite: specific byte length (max 65535)
uint8_t W25QXX_BUFFER[4096];
void W25QXX_Write(uint8_t* pBuffer,uint32_t WriteAddr,uint16_t NumByteToWrite)
{
	uint32_t secpos;
	uint16_t secoff;
	uint16_t secremain;
 	uint16_t i;
	uint8_t * W25QXX_BUF;
   	W25QXX_BUF=W25QXX_BUFFER;
 	secpos=WriteAddr/4096;                                        //sector number (16 pages for 1 sector) for destination address
	secoff=WriteAddr%4096;                                        //offset address in sector for destination address
	secremain=4096-secoff;                                        //remained space for sector
 	if(NumByteToWrite<=secremain)secremain=NumByteToWrite;        //data can be written in single sector
	while(1)
	{
		W25QXX_Read(W25QXX_BUF,secpos*4096,4096);                 //read sector data for ease necessity judgment
		for(i=0;i<secremain;i++)                                  //check sector data status
		{
			if(W25QXX_BUF[secoff+i]!=0XFF) break;                 //ease necessary
		}

		if(i<secremain)                                           //for ease
		{
			W25QXX_Erase_Sector(secpos);                          //ease sector
			for(i=0;i<secremain;i++)	                          //data copy
			{
				W25QXX_BUF[i+secoff]=pBuffer[i];
			}
			W25QXX_Write_NoCheck(W25QXX_BUF,secpos*4096,4096);     //write sector

		}
		else W25QXX_Write_NoCheck(pBuffer,WriteAddr,secremain);   //write data for sector unnecessary to erase

		if(NumByteToWrite==secremain)break;                        //for operation end
		else                                                       //for operation continuing
		{
			secpos++;                                              //sector number + 1
			secoff=0;                                              //offset address from 0

		   	pBuffer+=secremain;                                    //pointer adjustment
			WriteAddr+=secremain;                                  //write address adjustment
		   	NumByteToWrite-=secremain;				               //write number adjustment
			if(NumByteToWrite>4096) secremain=4096;	               //not last sector
			else secremain=NumByteToWrite;			               //last sector
		}
	};
}

//Erase whole chip, long waiting...
void W25QXX_Erase_Chip(void)
{
    W25QXX_Write_Enable();                  //write enable
    W25QXX_Wait_Busy();
  	W25QXX_CS(0);
    SPI2_ReadWriteByte(W25X_ChipErase);     //send erase command
	W25QXX_CS(1);
	W25QXX_Wait_Busy();   				    //wait for erase complete
}

//Erase one sector
//Sector_Num: sector number
void W25QXX_Erase_Sector(uint32_t Sector_Num)
{
 	Sector_Num*=4096;
    W25QXX_Write_Enable();                                     //write enable
    W25QXX_Wait_Busy();
  	W25QXX_CS(0);
    SPI2_ReadWriteByte(W25X_SectorErase);                      //send erase command
    if((W25QXX_TYPE==W25Q256_ID)||(W25QXX_TYPE==W25Q512_ID)||(W25QXX_TYPE==W25Q1024_ID)) //send highest 8-bit address
    {
        SPI2_ReadWriteByte((uint8_t)((Sector_Num)>>24));
    }
    SPI2_ReadWriteByte((uint8_t)((Sector_Num)>>16));           //send 24-bit address
    SPI2_ReadWriteByte((uint8_t)((Sector_Num)>>8));
    SPI2_ReadWriteByte((uint8_t)Sector_Num);
	W25QXX_CS(1);
    W25QXX_Wait_Busy();   				                       //wait for erase complete
}

//Wait idle status before next operation
void W25QXX_Wait_Busy(void)
{
	while((W25QXX_ReadSR(1)&0x01)==0x01);    //wait for busy flag cleared
}

//Enter power-down mode
#define tDP_us 3
void W25QXX_PowerDown(void)
{
  	W25QXX_CS(0);
    SPI2_ReadWriteByte(W25X_PowerDown);      //send power-down command
	W25QXX_CS(1);
	PY_Delay_us_t(tDP_us);                   //tDP
}
//Wake-up
#define tRES1_us 3
void W25QXX_WAKEUP(void)
{
  	W25QXX_CS(0);
    SPI2_ReadWriteByte(W25X_ReleasePowerDown);//send release power-down command
	W25QXX_CS(1);
	PY_Delay_us_t(tRES1_us);                  //tRES1
}

对ffconf.h添加包含信息:
在这里插入图片描述

#include "main.h"
#include "stm32h7xx_hal.h"

修改user_diskio.c,对文件操作函数与底层FLASH读写提供连接:

/* USER CODE BEGIN Header */
/**
 ******************************************************************************
  * @file    user_diskio.c
  * @brief   This file includes a diskio driver skeleton to be completed by the user.
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2023 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
 /* USER CODE END Header */

#ifdef USE_OBSOLETE_USER_CODE_SECTION_0
/*
 * Warning: the user section 0 is no more in use (starting from CubeMx version 4.16.0)
 * To be suppressed in the future.
 * Kept to ensure backward compatibility with previous CubeMx versions when
 * migrating projects.
 * User code previously added there should be copied in the new user sections before
 * the section contents can be deleted.
 */
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
#endif

/* USER CODE BEGIN DECL */
/**************************SELF DEFINITION PART************/
#include "diskio.h"		/* Declarations of disk functions */
#include "W25QXX.h"
/**********************************************************/
/* Includes ------------------------------------------------------------------*/
#include <string.h>
#include "ff_gen_drv.h"

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/

/* Private variables ---------------------------------------------------------*/
/* Disk status */
static volatile DSTATUS Stat = STA_NOINIT;

/* USER CODE END DECL */

/* Private function prototypes -----------------------------------------------*/
DSTATUS USER_initialize (BYTE pdrv);
DSTATUS USER_status (BYTE pdrv);
DRESULT USER_read (BYTE pdrv, BYTE *buff, DWORD sector, UINT count);
#if _USE_WRITE == 1
  DRESULT USER_write (BYTE pdrv, const BYTE *buff, DWORD sector, UINT count);
#endif /* _USE_WRITE == 1 */
#if _USE_IOCTL == 1
  DRESULT USER_ioctl (BYTE pdrv, BYTE cmd, void *buff);
#endif /* _USE_IOCTL == 1 */

Diskio_drvTypeDef  USER_Driver =
{
  USER_initialize,
  USER_status,
  USER_read,
#if  _USE_WRITE
  USER_write,
#endif  /* _USE_WRITE == 1 */
#if  _USE_IOCTL == 1
  USER_ioctl,
#endif /* _USE_IOCTL == 1 */
};

/* Private functions ---------------------------------------------------------*/

/**
  * @brief  Initializes a Drive
  * @param  pdrv: Physical drive number (0..)
  * @retval DSTATUS: Operation status
  */
DSTATUS USER_initialize (
	BYTE pdrv           /* Physical drive nmuber to identify the drive */
)
{
  /* USER CODE BEGIN INIT */
	/**************************SELF DEFINITION PART************/
		  uint8_t res;
		  res = W25QXX_Init();

		  if(res) return RES_OK;
		  else return  STA_NOINIT;
	/**********************************************************/
	/*
    Stat = STA_NOINIT;
    return Stat;
    */
  /* USER CODE END INIT */
}

/**
  * @brief  Gets Disk Status
  * @param  pdrv: Physical drive number (0..)
  * @retval DSTATUS: Operation status
  */
DSTATUS USER_status (
	BYTE pdrv       /* Physical drive number to identify the drive */
)
{
  /* USER CODE BEGIN STATUS */
	/**************************SELF DEFINITION PART************/
		switch (pdrv)
			{
				case 0 :
					return RES_OK;
				case 1 :
					return RES_OK;
				case 2 :
					return RES_OK;
				default:
					return STA_NOINIT;
			}
	/**********************************************************/
	/*
    Stat = STA_NOINIT;
    return Stat;
    */
  /* USER CODE END STATUS */
}

/**
  * @brief  Reads Sector(s)
  * @param  pdrv: Physical drive number (0..)
  * @param  *buff: Data buffer to store read data
  * @param  sector: Sector address (LBA)
  * @param  count: Number of sectors to read (1..128)
  * @retval DRESULT: Operation result
  */
DRESULT USER_read (
	BYTE pdrv,      /* Physical drive nmuber to identify the drive */
	BYTE *buff,     /* Data buffer to store read data */
	DWORD sector,   /* Sector address in LBA */
	UINT count      /* Number of sectors to read */
)
{
  /* USER CODE BEGIN READ */
	/**************************SELF DEFINITION PART************/
		    uint16_t len;
			if( !count )
			{
				return RES_PARERR;  /* count不能等于0,否则返回参数错误*/
			}
			switch (pdrv)
			{
				case 0:
					sector <<= 9; //Convert sector number to byte address
				    len = count*512;
				    W25QXX_Read(buff, sector, len);
				    return RES_OK;
				default:
					return RES_ERROR;
			}
	/**********************************************************/
	/*
    return RES_OK;
    */
  /* USER CODE END READ */
}

/**
  * @brief  Writes Sector(s)
  * @param  pdrv: Physical drive number (0..)
  * @param  *buff: Data to be written
  * @param  sector: Sector address (LBA)
  * @param  count: Number of sectors to write (1..128)
  * @retval DRESULT: Operation result
  */
#if _USE_WRITE == 1
DRESULT USER_write (
	BYTE pdrv,          /* Physical drive nmuber to identify the drive */
	const BYTE *buff,   /* Data to be written */
	DWORD sector,       /* Sector address in LBA */
	UINT count          /* Number of sectors to write */
)
{
  /* USER CODE BEGIN WRITE */
  /* USER CODE HERE */
	/**************************SELF DEFINITION PART************/
		    uint16_t len;
			if( !count )
			{
				return RES_PARERR;  /* count不能等于0,否则返回参数错误*/
			}
			switch (pdrv)
			{
				case 0:
					sector <<= 9; //Convert sector number to byte address
				    len = count*512;
				    W25QXX_Write((uint8_t *)buff, sector, len);
				    return RES_OK;
				default:
					return RES_ERROR;
			}
	/*********************************************************/
	/*
    return RES_OK;
    */
  /* USER CODE END WRITE */
}
#endif /* _USE_WRITE == 1 */

/**
  * @brief  I/O control operation
  * @param  pdrv: Physical drive number (0..)
  * @param  cmd: Control code
  * @param  *buff: Buffer to send/receive control data
  * @retval DRESULT: Operation result
  */
#if _USE_IOCTL == 1
DRESULT USER_ioctl (
	BYTE pdrv,      /* Physical drive nmuber (0..) */
	BYTE cmd,       /* Control code */
	void *buff      /* Buffer to send/receive control data */
)
{
  /* USER CODE BEGIN IOCTL */
	/**************************SELF DEFINITION PART************/
             #define user_sector_byte_size 512
		     DRESULT res;
			 switch(cmd)
			    {
				    case CTRL_SYNC:
								W25QXX_Wait_Busy();
								res=RES_OK;
				        break;
				    case GET_SECTOR_SIZE:
				        *(WORD*)buff = user_sector_byte_size;
				        res = RES_OK;
				        break;
				    case GET_BLOCK_SIZE:
				        *(WORD*)buff = 4096/user_sector_byte_size;
				        res = RES_OK;
				        break;
				    case GET_SECTOR_COUNT:
				    	W25QXX_TYPE=W25QXX_ReadID();
				    	if(W25QXX_TYPE==W25Q80_ID) *(DWORD*)buff = (8*1024*1024/512);
				    	else if(W25QXX_TYPE==W25Q16_ID) *(DWORD*)buff = (16*1024*1024/512);
				    	else if(W25QXX_TYPE==W25Q32_ID) *(DWORD*)buff = (32*1024*1024/512);
				    	else if(W25QXX_TYPE==W25Q64_ID) *(DWORD*)buff = (64*1024*1024/512);
				    	else if(W25QXX_TYPE==W25Q128_ID) *(DWORD*)buff = (128*1024*1024/512);
				    	else if(W25QXX_TYPE==W25Q256_ID) *(DWORD*)buff = (256*1024*1024/512);
				    	else if(W25QXX_TYPE==W25Q512_ID) *(DWORD*)buff = (512*1024*1024/512);
				    	else if(W25QXX_TYPE==W25Q1024_ID) *(DWORD*)buff = (1024*1024*1024/512);
				    	else *(DWORD*)buff = (8*1024*1024/512);
				        res = RES_OK;
				        break;
				    default:
				        res = RES_PARERR;
				        break;
			    }
				return res;
	/**********************************************************/
	/*
    DRESULT res = RES_ERROR;
    return res;
    */
  /* USER CODE END IOCTL */
}
#endif /* _USE_IOCTL == 1 */


然后在main.c里根据串口输入命令(16进制单字节)实现如下功能:
0x01. 读取FLASH ID
0x02. 装载FATS文件系统
0x03: 创建/打开文件并从头位置写入数据
0x04: 打开文件并从头位置读入数据
0x05: 创建/打开文件并从特定位置写入数据
0x06: 打开文件并从特定位置读入数据
完整的代码实现如下:

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2023 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
//Written by Pegasus Yu in 2023
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "fatfs.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "usart.h"
#include "W25QXX.h"
#include <string.h>
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
__IO float usDelayBase;
void PY_usDelayTest(void)
{
  __IO uint32_t firstms, secondms;
  __IO uint32_t counter = 0;

  firstms = HAL_GetTick()+1;
  secondms = firstms+1;

  while(uwTick!=firstms) ;

  while(uwTick!=secondms) counter++;

  usDelayBase = ((float)counter)/1000;
}

void PY_Delay_us_t(uint32_t Delay)
{
  __IO uint32_t delayReg;
  __IO uint32_t usNum = (uint32_t)(Delay*usDelayBase);

  delayReg = 0;
  while(delayReg!=usNum) delayReg++;
}

void PY_usDelayOptimize(void)
{
  __IO uint32_t firstms, secondms;
  __IO float coe = 1.0;

  firstms = HAL_GetTick();
  PY_Delay_us_t(1000000) ;
  secondms = HAL_GetTick();

  coe = ((float)1000)/(secondms-firstms);
  usDelayBase = coe*usDelayBase;
}


void PY_Delay_us(uint32_t Delay)
{
  __IO uint32_t delayReg;

  __IO uint32_t msNum = Delay/1000;
  __IO uint32_t usNum = (uint32_t)((Delay%1000)*usDelayBase);

  if(msNum>0) HAL_Delay(msNum);

  delayReg = 0;
  while(delayReg!=usNum) delayReg++;
}
/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

SPI_HandleTypeDef hspi2;

UART_HandleTypeDef huart1;

/* USER CODE BEGIN PV */
uint8_t uart1_rx[16];
uint8_t cmd;

uint8_t Flash_mount_status = 0; //FLASH fats mount status indication (0: unmount; 1: mount)
uint8_t FATS_Buff[_MAX_SS]; //Buffer for f_mkfs() operation

FRESULT retFLASH;
FIL file;
FATFS *fs;

UINT bytesread;
UINT byteswritten;
uint8_t rBuffer[20];      //Buffer for read
uint8_t WBuffer[20] ={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}; //Buffer for write

#define user_sector_byte_size 512
uint8_t flashbuffer[user_sector_byte_size];

extern char USERPath[4];
/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
void PeriphCommonClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_USART1_UART_Init(void);
static void MX_SPI2_Init(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */
	Flash_mount_status = 0;
	uint32_t FLASH_Read_Size;

    extern char USERPath[4];

    	char * dpath = "0:"; //Disk Path
	for(uint8_t i=0; i<4; i++)
	{
		USERPath[i] = *(dpath+i);
	}

	const TCHAR* filepath = "0:test.txt";
  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

/* Configure the peripherals common clocks */
  PeriphCommonClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_USART1_UART_Init();
  MX_SPI2_Init();
  MX_FATFS_Init();
  /* USER CODE BEGIN 2 */
  PY_usDelayTest();
  PY_usDelayOptimize();

  HAL_UART_Receive_IT(&huart1, uart1_rx, 1);

  W25QXX_Init();

  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
	     if(cmd==1) //Read ID
	     {
	    	 cmd = 0;
	    	 printf("FLASH ID=0x%x\r\n\r\n", W25QXX_ReadID());
		     printf("W25Q80_ID: 0XEF13\r\n");
		     printf("W25Q16_ID: 0XEF14\r\n");
		     printf("W25Q32_ID: 0XEF15\r\n");
		     printf("W25Q64_ID: 0XEF16\r\n");
		     printf("W25Q128_ID: 0XEF17\r\n");
		     printf("W25Q256_ID: 0XEF18\r\n");
		     printf("W25Q512_ID: 0XEF18\r\n");
		     printf("W25Q1024_ID: 0XEF20\r\n");
	     }
	     else if(cmd==2) //Flash File System Mount
	     {
	    	 cmd = 0;

	    	 retFLASH=f_mount(&USERFatFS, (TCHAR const*)USERPath, 1);
	    	    		 if (retFLASH != FR_OK)
	    	    		 {
	    	    		   printf("File system mount failure: %d\r\n", retFLASH);

	    	    		   if(retFLASH==FR_NO_FILESYSTEM)
	    	    		   {
	    	    			   printf("No file system. Now to format......\r\n");
	    	    			   retFLASH = f_mkfs((TCHAR const*)USERPath, FM_FAT, 1024, FATS_Buff, sizeof(FATS_Buff)); //FLASH formatting
	    	    			   if(retFLASH == FR_OK)
	    	    			   {
	    	                      printf("FLASH formatting success!\r\n");
	    	    			   }
	    	    				else
	    	    			   {
	    	    				  printf("FLASH formatting failure!\r\n");
	    	    			   }

	    	    		   }
	    	    		 }
	    	    		 else
	    	    		 {
	    	    			 Flash_mount_status = 1;
	    	    			 printf("File system mount success\r\n");
	    	    		 }
	     }

		 else if(cmd==3) //File creation and write
		 {
				  cmd = 0;

				  if(Flash_mount_status==0) printf("\r\nFLASH File system not mounted: %d\r\n",retFLASH);
				  else
				  {
						retFLASH = f_open( &file, filepath, FA_CREATE_ALWAYS | FA_WRITE );  //Open or create file
						if(retFLASH == FR_OK)
						{
							printf("\r\nFile open or creation successful\r\n");

							retFLASH = f_write( &file, (const void *)WBuffer, sizeof(WBuffer), &byteswritten); //Write data

							if(retFLASH == FR_OK)
							{
								printf("\r\nFile write successful\r\n");

							}
							else
							{
								printf("\r\nFile write error: %d\r\n",retFLASH);
							}

							f_close(&file);   //Close file
						}
						else
						{
							printf("\r\nFile open or creation error %d\r\n",retFLASH);
						}
				   }

	    }

	    else if(cmd==4) //File read
	    {
				  cmd = 0;

				  if(Flash_mount_status==0) printf("\r\nFLASH File system not mounted: %d\r\n",retFLASH);
				  else
				  {
						retFLASH = f_open( &file, filepath, FA_OPEN_EXISTING | FA_READ); //Open file
						if(retFLASH == FR_OK)
						{
							printf("\r\nFile open successful\r\n");

							retFLASH = f_read( &file, (void *)rBuffer, sizeof(rBuffer), &bytesread); //Read data

							if(retFLASH == FR_OK)
							{
								printf("\r\nFile read successful\r\n");
								PY_Delay_us_t(200000);

								FLASH_Read_Size = sizeof(rBuffer);
								for(uint16_t i = 0;i < FLASH_Read_Size;i++)
								{
									printf("%d ", rBuffer[i]);
								}
								printf("\r\n");

							}
							else
							{
								printf("\r\nFile read error: %d\r\n", retFLASH);
							}
							f_close(&file); //Close file
						}
						else
						{
							printf("\r\nFile open error: %d\r\n", retFLASH);
						}
				  }

		}

		else if(cmd==5) //File locating write
	    {
				  cmd = 0;

				  if(Flash_mount_status==0) printf("\r\nFLASH File system not mounted: %d\r\n",retFLASH);
				  else
				  {
						retFLASH = f_open( &file, filepath, FA_CREATE_ALWAYS | FA_WRITE);  //Open or create file
						if(retFLASH == FR_OK)
						{
							printf("\r\nFile open or creation successful\r\n");

							retFLASH=f_lseek( &file, f_tell(&file) + sizeof(WBuffer) ); //move file operation pointer, f_tell(&file) gets file head locating

							if(retFLASH == FR_OK)
							{

								retFLASH = f_write( &file, (const void *)WBuffer, sizeof(WBuffer), &byteswritten);
								if(retFLASH == FR_OK)
								{
									printf("\r\nFile locating write successful\r\n");
								}
								else
								{
									printf("\r\nFile locating write error: %d\r\n", retFLASH);
								}

							}
							else
							{
								printf("\r\nFile pointer error: %d\r\n",retFLASH);
							}

							f_close(&file);   //Close file
						}
						else
						{
							printf("\r\nFile open or creation error %d\r\n",retFLASH);
						}
				  }
		}

	    else if(cmd==6) //File locating read
		{
				  cmd = 0;

				  if(Flash_mount_status==0) printf("\r\nFLASH File system not mounted: %d\r\n",retFLASH);
				  else
				  {
						retFLASH = f_open(&file, filepath, FA_OPEN_EXISTING | FA_READ); //Open file
						if(retFLASH == FR_OK)
						{
							printf("\r\nFile open successful\r\n");

							retFLASH =  f_lseek(&file,f_tell(&file)+ sizeof(WBuffer)/2); //move file operation pointer, f_tell(&file) gets file head locating

							if(retFLASH == FR_OK)
							{
								retFLASH = f_read( &file, (void *)rBuffer, sizeof(rBuffer), &bytesread);
								if(retFLASH == FR_OK)
								{
									printf("\r\nFile locating read successful\r\n");
									PY_Delay_us_t(200000);

									FLASH_Read_Size = sizeof(rBuffer);
									for(uint16_t i = 0;i < FLASH_Read_Size;i++)
									{
										printf("%d ",rBuffer[i]);
									}
									printf("\r\n");
								}
								else
								{
									printf("\r\nFile locating read error: %d\r\n",retFLASH);
								}
							}
							else
							{
								printf("\r\nFile pointer error: %d\r\n",retFLASH);
							}
							f_close(&file);
						}
						else
						{
							printf("\r\nFile open error: %d\r\n",retFLASH);
						}
				  }
	     }

    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Supply configuration update enable
  */
  HAL_PWREx_ConfigSupply(PWR_LDO_SUPPLY);

  /** Configure the main internal regulator output voltage
  */
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

  while(!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) {}

  __HAL_RCC_SYSCFG_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE0);

  while(!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) {}

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_DIV1;
  RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
  RCC_OscInitStruct.PLL.PLLM = 4;
  RCC_OscInitStruct.PLL.PLLN = 60;
  RCC_OscInitStruct.PLL.PLLP = 2;
  RCC_OscInitStruct.PLL.PLLQ = 2;
  RCC_OscInitStruct.PLL.PLLR = 2;
  RCC_OscInitStruct.PLL.PLLRGE = RCC_PLL1VCIRANGE_3;
  RCC_OscInitStruct.PLL.PLLVCOSEL = RCC_PLL1VCOWIDE;
  RCC_OscInitStruct.PLL.PLLFRACN = 0;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2
                              |RCC_CLOCKTYPE_D3PCLK1|RCC_CLOCKTYPE_D1PCLK1;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.SYSCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB3CLKDivider = RCC_APB3_DIV2;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_APB1_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_APB2_DIV2;
  RCC_ClkInitStruct.APB4CLKDivider = RCC_APB4_DIV2;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief Peripherals Common Clock Configuration
  * @retval None
  */
void PeriphCommonClock_Config(void)
{
  RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0};

  /** Initializes the peripherals clock
  */
  PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_CKPER;
  PeriphClkInitStruct.CkperClockSelection = RCC_CLKPSOURCE_HSI;
  if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief SPI2 Initialization Function
  * @param None
  * @retval None
  */
static void MX_SPI2_Init(void)
{

  /* USER CODE BEGIN SPI2_Init 0 */

  /* USER CODE END SPI2_Init 0 */

  /* USER CODE BEGIN SPI2_Init 1 */

  /* USER CODE END SPI2_Init 1 */
  /* SPI2 parameter configuration*/
  hspi2.Instance = SPI2;
  hspi2.Init.Mode = SPI_MODE_MASTER;
  hspi2.Init.Direction = SPI_DIRECTION_2LINES;
  hspi2.Init.DataSize = SPI_DATASIZE_8BIT;
  hspi2.Init.CLKPolarity = SPI_POLARITY_LOW;
  hspi2.Init.CLKPhase = SPI_PHASE_1EDGE;
  hspi2.Init.NSS = SPI_NSS_SOFT;
  hspi2.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
  hspi2.Init.FirstBit = SPI_FIRSTBIT_MSB;
  hspi2.Init.TIMode = SPI_TIMODE_DISABLE;
  hspi2.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  hspi2.Init.CRCPolynomial = 0x0;
  hspi2.Init.NSSPMode = SPI_NSS_PULSE_ENABLE;
  hspi2.Init.NSSPolarity = SPI_NSS_POLARITY_LOW;
  hspi2.Init.FifoThreshold = SPI_FIFO_THRESHOLD_01DATA;
  hspi2.Init.TxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;
  hspi2.Init.RxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;
  hspi2.Init.MasterSSIdleness = SPI_MASTER_SS_IDLENESS_00CYCLE;
  hspi2.Init.MasterInterDataIdleness = SPI_MASTER_INTERDATA_IDLENESS_00CYCLE;
  hspi2.Init.MasterReceiverAutoSusp = SPI_MASTER_RX_AUTOSUSP_DISABLE;
  hspi2.Init.MasterKeepIOState = SPI_MASTER_KEEP_IO_STATE_DISABLE;
  hspi2.Init.IOSwap = SPI_IO_SWAP_DISABLE;
  if (HAL_SPI_Init(&hspi2) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN SPI2_Init 2 */

  /* USER CODE END SPI2_Init 2 */

}

/**
  * @brief USART1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_USART1_UART_Init(void)
{

  /* USER CODE BEGIN USART1_Init 0 */

  /* USER CODE END USART1_Init 0 */

  /* USER CODE BEGIN USART1_Init 1 */

  /* USER CODE END USART1_Init 1 */
  huart1.Instance = USART1;
  huart1.Init.BaudRate = 115200;
  huart1.Init.WordLength = UART_WORDLENGTH_8B;
  huart1.Init.StopBits = UART_STOPBITS_1;
  huart1.Init.Parity = UART_PARITY_NONE;
  huart1.Init.Mode = UART_MODE_TX_RX;
  huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
  huart1.Init.ClockPrescaler = UART_PRESCALER_DIV1;
  huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
  if (HAL_UART_Init(&huart1) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_UARTEx_SetTxFifoThreshold(&huart1, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_UARTEx_SetRxFifoThreshold(&huart1, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_UARTEx_DisableFifoMode(&huart1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART1_Init 2 */

  /* USER CODE END USART1_Init 2 */

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOB_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOB, GPIO_PIN_12, GPIO_PIN_SET);

  /*Configure GPIO pin : PB12 */
  GPIO_InitStruct.Pin = GPIO_PIN_12;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
  HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

}

/* USER CODE BEGIN 4 */
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
	if(huart==&huart1)
	{
		cmd = uart1_rx[0];
		HAL_UART_Receive_IT(&huart1, uart1_rx, 1);
	}

}
/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */



STM32例程测试

串口指令0x01测试效果如下:
在这里插入图片描述
串口指令0x02测试效果如下:
在这里插入图片描述
串口指令0x03测试效果如下:
在这里插入图片描述
串口指令0x04测试效果如下:
在这里插入图片描述串口指令0x05测试效果如下:
在这里插入图片描述
串口指令0x06测试效果如下:
在这里插入图片描述

STM32例程下载

STM32H750VBT6 SPI总线FATS文件读写FLASH W25QXX例程下载

–End–

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1229003.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C++ 十进制与十六进制转换

文章作者&#xff1a;里海 来源网站&#xff1a;里海C\C专栏 十进制与十六进制转换 #include <iostream> #include <string> using namespace std;//十进制整数转十六进制字符串 string DecimalToHex(long long decimal) {string hex "";while (de…

buildadmin+tp8表格操作(3)----表头上方按钮绑定事件处理,实现功能(选中或取消指定行)

在buildAdmin的表格中&#xff0c;通过按钮来选中和取消某一行 这种情况&#xff0c;只适合表格行的单选 在elementplus是这样说的 我们所使用的就是这个方法 看一下buildAdmin中的用法 highlight-current-row 是element-plus 中表格的属性 因为 buildadmin 中的table是对 el…

ModuleNotFoundError: No module named ‘pycocotools‘

cuda 12.1 pytorch 2.0.1 python 3.11 运行代码&#xff0c;报该错误&#xff0c;尝试了以下方法解决&#xff1a; 方法一 # step 1: 安装cython pip install Cython# step 2: 安装pycocotools pip install githttps://github.com/philferriere/cocoapi.git#eggpycocotools…

商业园区的万能管理法,还怪高级的咧!

随着社会的不断发展和科技的飞速进步&#xff0c;视频监控技术已经成为维护安全、提高效率以及实现智能化管理的关键工具。 在这个信息时代&#xff0c;人们对于安全和管理的需求不断提升&#xff0c;而视频监控系统作为一种强大而灵活的解决方案&#xff0c;正日益受到各行各业…

性格急躁怎么办?如何改变急躁的性格?

性格急躁很多人可能都有&#xff0c;有的人只是有过&#xff0c;而有些人持续的有&#xff0c;而且越来越频繁&#xff0c;要说偶尔出现性格急躁也算不上什么大问题&#xff0c;可是当急躁成了一种人格特征&#xff0c;或者说急躁是在一段时间内持续的&#xff0c;那么这问题就…

【漏洞复现】浙大恩特CRM大客户系统sql注入0day(三)

漏洞描述 杭州恩软信息技术有限公司(浙大恩特)提供外贸管理软件、外贸客户管理软件等外贸软件,是一家专注于外贸客户资源管理及订单管理产品及服务的综合性公司。 浙大恩特客户资源管理系统中的T0140_editAction.entweb接口存在SQL注入漏洞,攻击者可通过此漏洞获取企业数…

如何通过算法模型进行数据预测

当今数据时代背景下更加重视数据的价值&#xff0c;企业信息化建设会越来越完善&#xff0c;越来越体系化&#xff0c;以数据说话&#xff0c;通过数据为企业提升渠道转化率、改善企业产品、实现精准运营&#xff0c;为企业打造自助模式的数据分析成果&#xff0c;以数据驱动决…

SpringBoot3.x最简集成SpringDoc-OpenApi

为什么使用SpringDoc 在SpringBoot低版本时一般使用Swagger扫描接口生成Json格式的在线文档&#xff0c;然后通过swagger-ui将Json格式的文档以页面形式展示文档。可惜遗憾的是swagger更新到3.0.0版本(springfox)后不更新了。 SpringBoot3.x以后需要的JDK版本最低为Java17&…

C#中的is和as的使用和区别

目录 概述一、is操作符1. is操作符的语法2. is操作符的用途3. is操作符的使用示例4. is操作符与typeof操作符的区别 二、as操作符1. as操作符的语法2. as操作符的用途3. as操作符的使用示例4. as操作符与is操作符的区别和联系5. as操作符与is操作符的区别总结 概述 在C#编程语…

深度学习系列54:使用 MMDETECTION 和 LABEL-STUDIO 进行半自动化目标检测标注

参考https://mmdetection.readthedocs.io/zh-cn/latest/user_guides/label_studio.html&#xff0c;这里进行简要概述&#xff1a; 1. 启动目标检测服务 在mmdetection文件夹中&#xff0c;执行 label-studio-ml start projects/LabelStudio/backend_template --with \ conf…

基于 FFmpeg 的跨平台视频播放器简明教程(十一):一种简易播放器的架构介绍

系列文章目录 基于 FFmpeg 的跨平台视频播放器简明教程&#xff08;一&#xff09;&#xff1a;FFMPEG Conan 环境集成基于 FFmpeg 的跨平台视频播放器简明教程&#xff08;二&#xff09;&#xff1a;基础知识和解封装&#xff08;demux&#xff09;基于 FFmpeg 的跨平台视频…

python用最小二乘法实现平面拟合

文章目录 数学原理代码实现测试 数学原理 平面方程可写为 A x B y C z D 0 AxByCzD0 AxByCzD0 假设 C C C不为0&#xff0c;则上式可以改写为 z a x b y d zaxbyd zaxbyd 则现有一组点 { p i } \{p_i\} {pi​}&#xff0c;则根据 x i , y i x_i,y_i xi​,yi​以及平面…

金蝶云星空对接打通旺店通·旗舰奇门采购退料单查询接口与创建货品档案接口

金蝶云星空对接打通旺店通旗舰奇门采购退料单查询接口与创建货品档案接口 来源系统:金蝶云星空 金蝶K/3Cloud在总结百万家客户管理最佳实践的基础上&#xff0c;提供了标准的管理模式&#xff1b;通过标准的业务架构&#xff1a;多会计准则、多币别、多地点、多组织、多税制应用…

08.智慧商城——购物车布局、全选反选、功能实现

01. 购物车 - 静态布局 基本结构 <template><div class"cart"><van-nav-bar title"购物车" fixed /><!-- 购物车开头 --><div class"cart-title"><span class"all">共<i>4</i>件商品…

《微信小程序开发从入门到实战》学习十八

3.3 开发创建投票页面 3.3.5 数据的双向传递 通过上一小节的代码和预览效果可以看到使用时间函数可以将视图层传递到逻辑层。 视图层数据由小程序管理&#xff0c;逻辑层通常保存在data对象&#xff0c;必须由开发者自己管理。 微信开发工具的AppData的面板可以实时查看到页…

计算机网络必知必会——传输层TCP

&#x1f4d1;前言 本文主要SpringBoot通过DevTools实现热部署的文章&#xff0c;如果有什么需要改进的地方还请大佬指出⛺️ &#x1f3ac;作者简介&#xff1a;大家好&#xff0c;我是青衿&#x1f947; ☁️博客首页&#xff1a;CSDN主页放风讲故事 &#x1f304;每日一句&…

安全测试工具分为 SAST、DAST和IAST 您知道吗?

相信刚刚步入安全测试领域的同学都会发现&#xff0c;安全测试领域工具甚多&#xff0c;不知如何选择&#xff01;其实安全测试工具大致分为三类&#xff1a;SAST、DAST和IAST。本文就带大家快速的了解这三者的本质区别&#xff01; SAST &#xff08;Static Application Secu…

MacOs 删除第三方软件

AppStore下载的软件 如果删除AppStore下载的软件&#xff0c;直接长按软件&#xff0c;点击删除或拖到废纸篓就可以完成软件的删除 第三方软件 但是第三方下载的软件&#xff0c;无法拖进废纸篓&#xff0c;长按软件也没有右上角的小叉 可以通过以下方法实现对软件的卸载 …

Spring高级bean的实例化方法

bean的实例化方法 构造方法 实例化bean第一种&#xff1a;使用默认无参构造函数(常用) 第二种创建bean实例&#xff1a;静态工厂实例化&#xff08;了解&#xff09; 第三种&#xff1a;实例工厂&#xff08;了解&#xff09;与FactoryBean&#xff08;实用&#xff09;

微信怎么发状态?简单教程,一学就会!

微信是一个非常实用的社交应用&#xff0c;不仅提供了基础的聊天功能&#xff0c;还推出了很多其他有趣的功能。比如微信个人状态&#xff0c;这个功能可以让用户随时随地分享自己的心情和动态。那么&#xff0c;微信怎么发状态呢&#xff1f;本文将为大家介绍有关微信发状态的…