竞赛选题 深度学习驾驶行为状态检测系统(疲劳 抽烟 喝水 玩手机) - opencv python

news2024/11/15 19:59:50

文章目录

  • 1 前言
  • 1 课题背景
  • 2 相关技术
    • 2.1 Dlib人脸识别库
    • 2.2 疲劳检测算法
    • 2.3 YOLOV5算法
  • 3 效果展示
    • 3.1 眨眼
    • 3.2 打哈欠
    • 3.3 使用手机检测
    • 3.4 抽烟检测
    • 3.5 喝水检测
  • 4 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于深度学习的驾驶行为状态检测系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:5分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

为了有效监测驾驶员是否疲劳驾驶、避免交通事故的发⽣,本项目利⽤⼈脸特征点进⾏实时疲劳驾驶检测的新⽅法。对驾驶员驾驶时的⾯部图像进⾏实时监控,⾸先检测⼈脸,并利⽤ERT算法定位⼈脸特征点;然后根据⼈脸眼睛区域的特征点坐标信息计算眼睛纵横⽐EAR来描述眼睛张开程度,根据合适的EAR阈值可判断睁眼或闭眼状态;最后基于EAR实测值和EAR阈值对监控视频计算闭眼时间⽐例(PERCLOS)值度量驾驶员主观疲劳程度,将其与设定的疲劳度阈值进⾏⽐较即可判定是否疲劳驾驶。

2 相关技术

2.1 Dlib人脸识别库

简历
Dlib是一个基于c++开发的开源数据工具库,其中包含了不少的机器学习的成熟算法与模型,相对于tensorflow和PyTorch,它用于图像处理以及人脸面部特征提取、分类及对比这几个方面比较具有通用性和优越性,因此,Dlib正在越来越广泛地应用在人脸识别技术领域。
Dlib具有独立使用的可移植代码。Dlib中的代码使用c++语言进行开发而成,使用独立封装,在不借助第三方数据库的情况下,可以直接移植到自己所需要设计的项目中进行使用。

Dlib优点

  • Dlib拥有全面的文档说明。作为一个开源的人脸数据库训练集,Dlib中有很多功能齐全的程序和文件,从人性化的角度而言的,Dlib在这一点上做的是非常不错的,因为它为每一个程序文档和文件都做了相对应的注释,这样开发者就可以迅速准确的调集程序文档来完成自己所需要的项目功能。

  • Dlib涵盖了支持功能完备的深度学习以及图像处理的各类算法。Dlib为开发者提供了机器深度学习的各类成熟的完备算法,并且在图像处理方面也为开发者带来了能够解决大多数实质问题的优良算法。例如基于SVM的递归和分类算法,以及专门用于面对大规模分类和递归的降维算法。当然还有能够对未知函数进行预分类和预测的相关向量机,其分类和预测训练是基于贝叶斯框架。

相关代码

import` `matplotlib.pyplot as plt
import` `dlib
import` `numpy as np
import` `glob
import` `re
 
#正脸检测器
detector``=``dlib.get_frontal_face_detector()
#脸部关键形态检测器
sp``=``dlib.shape_predictor(r``"D:LBJAVAscriptshape_predictor_68_face_landmarks.dat"``)
#人脸识别模型
facerec ``=` `dlib.face_recognition_model_v1(r``"D:LBJAVAscriptdlib_face_recognition_resnet_model_v1.dat"``)
 
#候选人脸部描述向量集
descriptors``=``[]
 
photo_locations``=``[]
 
for` `photo ``in` `glob.glob(r``'D:LBJAVAscriptfaces*.jpg'``):
 ``photo_locations.append(photo)
 ``img``=``plt.imread(photo)
 ``img``=``np.array(img)
 
 ``#开始检测人脸
 ``dets``=``detector(img,``1``)
 
 ``for` `k,d ``in` `enumerate``(dets):
  ``#检测每张照片中人脸的特征
  ``shape``=``sp(img,d)
  ``face_descriptor``=``facerec.compute_face_descriptor(img,shape)
  ``v``=``np.array(face_descriptor)
  ``descriptors.append(v)
    
#输入的待识别的人脸处理方法相同
img``=``plt.imread(r``'D:test_photo10.jpg'``)
img``=``np.array(img)
dets``=``detector(img,``1``)
#计算输入人脸和已有人脸之间的差异程度(比如用欧式距离来衡量)
differences``=``[]
for` `k,d ``in` `enumerate``(dets):
 ``shape``=``sp(img,d)
 ``face_descriptor``=``facerec.compute_face_descriptor(img,shape)
 ``d_test``=``np.array(face_descriptor)
 
 ``#计算输入人脸和所有已有人脸描述向量的欧氏距离
 ``for` `i ``in` `descriptors:
  ``distance``=``np.linalg.norm(i``-``d_test)
  ``differences.append(distance)
 
#按欧式距离排序 欧式距离最小的就是匹配的人脸
candidate_count``=``len``(photo_locations)
candidates_dict``=``dict``(``zip``(photo_locations,differences))
candidates_dict_sorted``=``sorted``(candidates_dict.items(),key``=``lambda` `x:x[``1``])
 
#matplotlib要正确显示中文需要设置
plt.rcParams[``'font.family'``] ``=` `[``'sans-serif'``]
plt.rcParams[``'font.sans-serif'``] ``=` `[``'SimHei'``]
 
plt.rcParams[``'figure.figsize'``] ``=` `(``20.0``, ``70.0``)
 
ax``=``plt.subplot(candidate_count``+``1``,``4``,``1``)
ax.set_title(``"输入的人脸"``)
ax.imshow(img)
 
for` `i,(photo,distance) ``in` `enumerate``(candidates_dict_sorted):
 ``img``=``plt.imread(photo)
 
 ``face_name``=``""
 ``photo_name``=``re.search(r``'([^\]*).jpg$'``,photo)
 ``if` `photo_name:
  ``face_name``=``photo_name[``1``]
  
 ``ax``=``plt.subplot(candidate_count``+``1``,``4``,i``+``2``)
 ``ax.set_xticks([])
 ``ax.set_yticks([])
 ``ax.spines[``'top'``].set_visible(``False``)
 ``ax.spines[``'right'``].set_visible(``False``)
 ``ax.spines[``'bottom'``].set_visible(``False``)
 ``ax.spines[``'left'``].set_visible(``False``)
 
 ``if` `i``=``=``0``:
  ``ax.set_title(``"最匹配的人脸nn"``+``face_name``+``"nn差异度:"``+``str``(distance))
 ``else``:
  ``ax.set_title(face_name``+``"nn差异度:"``+``str``(distance))
 ``ax.imshow(img)
 
plt.show()

2.2 疲劳检测算法

该系统采用Dlib库中人脸68个关键点检测shape_predictor_68_face_landmarks.dat的dat模型库及视频中的人脸,之后返回人脸特征点坐标、人脸框及人脸角度等。本系统利用这68个关键点对驾驶员的疲劳状态进行检测,算法如下:

  1. 初始化Dlib的人脸检测器(HOG),然后创建面部标志物预测;
  2. 使用dlib.get_frontal_face_detector() 获得脸部位置检测器;
  3. 使用dlib.shape_predictor获得脸部特征位置检测器;
  4. 分别获取左、右眼面部标志的索引;
  5. 打开cv2本地摄像头。

Dlib库68个特征点模型如图所示:

眼睛检测算法

基于EAR算法的眨眼检测,当人眼睁开时,EAR在某个值域范围内波动,当人眼闭合时,EAR迅速下降,理论上接近于0。当EAR低于某个阈值时,眼睛处于闭合状态;当EAR由某个值迅速下降至小于该阈值,再迅速上升至大于该阈值,则判断为一次眨眼。为检测眨眼次数,需要设置同一次眨眼的连续帧数。眨眼速度较快,一般1~3帧即可完成眨眼动作。眼部特征点如图:
在这里插入图片描述
EAR计算公式如下:
在这里插入图片描述
当后帧眼睛宽高比与前一帧差值的绝对值(EAR)大于0.2时,认为驾驶员在疲劳驾驶。(68点landmark中可以看到37-42为左眼,43-48为右眼)
在这里插入图片描述
右眼开合度可以通过以下公式:
在这里插入图片描述
眼睛睁开度从大到小为进入闭眼期,从小到大为进入睁眼期,计算最长闭眼时间(可用帧数来代替)。闭眼次数为进入闭眼、进入睁眼的次数。通过设定单位时间内闭眼次数、闭眼时间的阈值判断人是否已经疲劳了。

相关代码:

# 疲劳检测,检测眼睛和嘴巴的开合程度

from scipy.spatial import distance as dist
from imutils.video import FileVideoStream
from imutils.video import VideoStream
from imutils import face_utils
import numpy as np  # 数据处理的库 numpy
import argparse
import imutils
import time
import dlib
import cv2
import math
import time
from threading import Thread

def eye_aspect_ratio(eye):
    # 垂直眼标志(X,Y)坐标
    A = dist.euclidean(eye[1], eye[5])  # 计算两个集合之间的欧式距离
    B = dist.euclidean(eye[2], eye[4])
    # 计算水平之间的欧几里得距离
    # 水平眼标志(X,Y)坐标
    C = dist.euclidean(eye[0], eye[3])
    # 眼睛长宽比的计算
    ear = (A + B) / (2.0 * C)
    # 返回眼睛的长宽比
    return ear

打哈欠检测算法

基于MAR算法的哈欠检测,利用Dlib提取嘴部的6个特征点,通过这6个特征点的坐标(51、59、53、57的纵坐标和49、55的横坐标)来计算打哈欠时嘴巴的张开程度。当一个人说话时,点51、59、53、57的纵坐标差值增大,从而使MAR值迅速增大,反之,当一个人闭上嘴巴时,MAR值迅速减小。

嘴部主要取六个参考点,如下图:
在这里插入图片描述
计算公式:
在这里插入图片描述
通过公式计算MAR来判断是否张嘴及张嘴时间,从而确定驾驶员是否在打哈欠。阈值应经过大量实验,能够与正常说话或哼歌区分开来。为提高判断的准确度,采用双阈值法进行哈欠检测,即对内轮廓进行检测:结合张口度与张口时间进行判断。Yawn为打哈欠的帧数,N为1
min内总帧数,设双阈值法哈欠检测的阈值为10%,当打哈欠频率Freq>10%时,则认为驾驶员打了1个深度哈欠或者至少连续2个浅哈欠,此时系统进行疲劳提醒。

相关代码:

# 疲劳检测,检测眼睛和嘴巴的开合程度

from scipy.spatial import distance as dist
from imutils.video import FileVideoStream
from imutils.video import VideoStream
from imutils import face_utils
import numpy as np  # 数据处理的库 numpy
import argparse
import imutils
import time
import dlib
import cv2
import math
import time
from threading import Thread

def mouth_aspect_ratio(mouth):  # 嘴部
    A = np.linalg.norm(mouth[2] - mouth[10])  # 51, 59
    B = np.linalg.norm(mouth[4] - mouth[8])  # 53, 57
    C = np.linalg.norm(mouth[0] - mouth[6])  # 49, 55
    mar = (A + B) / (2.0 * C)
    return mar

点头检测算法

基于HPE算法的点头检测:算法步骤:2D人脸关键点检测,3D人脸模型匹配,求解3D点和对应2D点的转换关系,根据旋转矩阵求解欧拉角。检测过程中需要使用世界坐标系(UVW)、相机坐标系(XYZ)、图像中心坐标系(uv)和像素坐标系(xy)。一个物体相对于相机的姿态可以使用旋转矩阵和平移矩阵来表示。

  • 平移矩阵:物体相对于相机的空间位置关系矩阵,用T表示。
  • 旋转矩阵:物体相对于相机的空间姿态关系矩阵,用R表示。

因此必然少不了坐标系转换。如图所示:
在这里插入图片描述
于是世界坐标系(UVW)、相机坐标系(XYZ)、图像中心坐标系(uv)和像素坐标系(xy)四兄弟闪亮登场。相对关系如:
世界坐标系转换到相机坐标:在这里插入图片描述
相机坐标系转换到像素坐标系:
在这里插入图片描述
像素坐标系与世界坐标系的关系为:
在这里插入图片描述
图像中心坐标系转换到像素坐标系:
在这里插入图片描述

得到旋转矩阵后,求欧拉角:
在这里插入图片描述
设定参数阈值为0.3,在一个时间段,如10
s内,当低头欧拉角|Pitch|≥20°或者头部倾斜欧拉角|Roll|≥20°的时间比例超过0.3时,则认为驾驶员处于瞌睡状态,发出预警。

2.3 YOLOV5算法

简介
我们选择当下YOLO最新的卷积神经网络YOLOv5来进行检测是否存在玩手机、抽烟、喝水这三种行为。6月9日,Ultralytics公司开源了YOLOv5,离上一次YOLOv4发布不到50天。而且这一次的YOLOv5是完全基于PyTorch实现的!在我们还对YOLOv4的各种高端操作、丰富的实验对比惊叹不已时,YOLOv5又带来了更强实时目标检测技术。按照官方给出的数目,现版本的YOLOv5每个图像的推理时间最快0.007秒,即每秒140帧(FPS),但YOLOv5的权重文件大小只有YOLOv4的1/9。

目标检测架构分为两种,一种是two-stage,一种是one-stage,区别就在于 two-stage 有region
proposal过程,类似于一种海选过程,网络会根据候选区域生成位置和类别,而one-stage直接从图片生成位置和类别。今天提到的 YOLO就是一种
one-stage方法。YOLO是You Only Look Once的缩写,意思是神经网络只需要看一次图片,就能输出结果。YOLO
一共发布了五个版本,其中 YOLOv1 奠定了整个系列的基础,后面的系列就是在第一版基础上的改进,为的是提升性能。

YOLOv5有4个版本性能如图所示:
在这里插入图片描述
网络架构图
在这里插入图片描述

3 效果展示

3.1 眨眼

在这里插入图片描述

3.2 打哈欠

在这里插入图片描述

3.3 使用手机检测

在这里插入图片描述

3.4 抽烟检测

在这里插入图片描述

3.5 喝水检测

在这里插入图片描述

4 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1223196.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

java每日一记 —— 谈谈反射

这应该是基础吧 1.先来说点前置知识:类的加载机制2.以自己的方式来谈反射的概念3.获取class的三种方式3.1.通过已知的类型获取class3.2.通过实例对象获取class3.3.通过Class.forName获取全路径指定类名的class 4.整理了一下API:坦言说🪡累5.现…

【腾讯云云上实验室-向量数据库】TAI时代的数据枢纽-向量数据库 VectorDB

一、向量数据库的发展历程和时代机遇 回顾向量数据库的发展历程: 2012年开始,深度神经网络的发展催生了向量数据库的发展;2015年至2016年,Google和微软发布了标志性的论文;2017年,Facebook开源了Faiss框架…

【具身智能评估1】具身视觉语言规划(EVLP)仿真环境汇总

参考论文:Core Challenges in Embodied Vision-Language Planning 论文作者:Jonathan Francis, Nariaki Kitamura, Felix Labelle, Xiaopeng Lu, Ingrid Navarro, Jean Oh 论文原文:https://arxiv.org/abs/2106.13948 论文出处:Jo…

文心一言-情感关怀之旅

如何让LLM更有温度。 应用介绍

猜数字优化版(带进度条)

其实就是加了个动态进度条显示加载游戏的流程&#xff0c;这样看上去是不是更有big了hhhh #include<windows.h> #include<iostream> #include<ctime> using namespace std; void menu() {printf("1.开始游戏\n");printf("0.退出游戏\n")…

PP-YOLOE: An evolved version of YOLO(2022.12)

文章目录 Abstract1. Introduction2. Method2.1. A Brief Review of PP-YOLOv22.2. Improvement of PP-YOLOEAnchor-freeBackbone and NeckTask Alignment Learning (TAL)Efficient Task-aligned Head (ET-head) 3.Experiment4. Conclusion 原文链接 源代码 Abstract 在本报告…

恕我直言,大模型对齐可能无法解决安全问题,我们都被表象误导了

是否听说过“伪对齐”这一概念&#xff1f; 在大型语言模型&#xff08;LLM&#xff09;的评估中&#xff0c;研究者发现了一个引人注目的现象&#xff1a;当面对多项选择题和开放式问题时&#xff0c;模型的表现存在显著差异。这一差异根源在于模型对复杂概念的理解不够全面&…

Python hashlib 模块详细教程:安全哈希与数据完整性保护

更多Python学习内容&#xff1a;ipengtao.com 大家好&#xff0c;我是涛哥&#xff0c;今天为大家分享 Python hashlib 模块详细教程&#xff0c;文章6500字&#xff0c;阅读大约17分钟&#xff0c;大家enjoy~~ hashlib模块为Python提供了一种简便的方式来使用各种哈希算法&…

ACM练习——第五天

还有两天就要比赛了&#xff0c;进入正题吧 题目一&#xff1a;小红的签到题 小红的签到题 (nowcoder.com) 这道题也就是热身水平&#xff0c;机会很清楚的发现只需要c/a就可以得出答案了 参考代码&#xff1a; #include <iostream>using namespace std;int main(){int a…

SecureCRT的“New line mode“

New line mode选中与不选中啥区别 在SecureCRT中&#xff0c;"New line mode"是一个关键配置项&#xff0c;主要用于解决不同操作系统之间的换行问题。当不选中"New line mode"时&#xff0c;SecureCRT会将接收到的数据按照原样发送&#xff0c;不会对数据…

腾讯智影数字人工具

腾讯智影数字人工具 腾讯智影数字人的形象风格多样&#xff0c;包括写实、卡通等&#xff0c;可以满足不同年龄层观众的喜好。同时&#xff0c;腾讯智影数字人也提供了灵活的驱动方案&#xff0c;可以通过文本或配音直接生成视频&#xff0c;并支持数字人做出与视频一样的动作…

计算机网络——WLAN简解

1. WLAN的发展历程 ❓ WLAN和WIFI有什么区别。 &#x1f604; 具体来说&#xff0c;WALN是抽象的概念&#xff0c;代表这无线局域网这一类技术&#xff0c;而WIFI则是具体的具体技术标准&#xff0c;虽然在生活中&#xff0c;二者的表现是强相关的&#xff08;因为是使用的wifi…

talbay---贝叶斯网络分析工具产品介绍

一 简介 talbay是拥有独立知识产权的国产软件&#xff0c;主要功能是贝叶斯网络建模、决策网络建模、概率计算、决策支持、敏感性分析、网络模型验证、机器学习等。talbay以用户为中心&#xff0c;简单易用, 计算准确高效&#xff0c;分析全面多样&#xff0c;在应用成熟理论及…

基础模型的自然语言处理能力综述

NLP作为一个领域为基础模型开辟了道路。虽然这些模型在标准基准测试中占据主导地位&#xff0c;但这些模型目前获得的能力与那些将语言描述为人类交流和思维的复杂系统的能力之间存在明显的差距。针对这一点&#xff0c;我们强调语言变异的全部范围&#xff08;例如&#xff0c…

西南科技大学814考研一

C语言基础 字节大小 char&#xff1a;1 字节 unsigned char&#xff1a;1 字节 short&#xff1a;2 字节 unsigned short&#xff1a;2 字节 int&#xff1a;通常为 4 字节&#xff08;32 位平台&#xff09;或 8 字节&#xff08;64 位平台&#xff09; unsigned int&#x…

汽车音响静音检测电路芯片D3703F,适用于汽车音响系统,采用封装形式SOP8

D3703F是-块汽车音响静音检测电路。用于音响系统检测在放音或快进/退时进行静音检测。D3703F的电压范围: 6V~16V&#xff0c; 信号检测和静音时间可通过外围电阻、电容来改变。 主要特点&#xff1a; ● 快进退时也可进行静音检测 ● 信号检测和静音时间可通过外围元件值来改…

机器学习笔记 - 使用 PyTorch 的多任务学习和 HydraNet

一、HydraNet简述 特斯拉使用了一个模型可以解决他们正在处理的每一项可能的任务。 例如:物体检测、道路曲线估计、深度估计、3D重建、视频分析、物体追踪、ETC等等。 以下是在 NVIDIA GPU 上以 3 种不同配置运行的 2 个计算机视觉模型的基准测试。 在第一个配置中,我…

贝叶斯AB测试

AB测试是用来评估变更效果的有效方法&#xff0c;但很多时候会运行大量AB测试&#xff0c;如果能够在测试中复用之前测试的结果&#xff0c;将有效提升AB测试的效率和有效性。原文: Bayesian AB Testing[1] 随机实验&#xff0c;又称AB测试&#xff0c;是行业中评估因果效应的既…

iframe父子页面通信相互调用传递参数多个postMessage

效果 如何运行 父页面代码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title>…

再也不用担心忘记密码了!如何在Windows 10或11中重置被遗忘的密码

​如果你忘记了Windows电脑的密码,不要惊慌。Windows 10和Windows 11都允许你重置忘记的密码,无论你使用的是Microsoft帐户还是本地帐户。你所要做的就是回答你的安全问题以重置密码。另一种选择是创建一个密码重置盘,你可以在任何U盘上进行。 除了使用密码之外,你还应该启…