在Rust编程中使用泛型

news2025/1/9 16:57:47

1.摘要

Rust中的泛型可以让我们为像函数签名或结构体这样的项创建定义, 这样它们就可以用于多种不同的具体数据类型。下面的内容将涉及泛型定义函数、结构体、枚举和方法, 还将讨论泛型如何影响代码性能。

2.在函数定义中使用泛型

当使用泛型定义函数时,本来在函数签名中指定参数和返回值的类型的地方,会改用泛型来表示。采用这种技术,使得代码适应性更强,从而为函数的调用者提供更多的功能,同时也避免了代码的重复。

看下面的代码例子, 定义了两个函数, 功能都差不多,作用是分别寻找slice中最大的i32和slice中最大的char, 只是数据类型不同。

fn largest_i32(list: &[i32]) -> &i32 {
    let mut largest = &list[0];
​
    for item in list {
        if item > largest {
            largest = item;
        }
    }
​
    largest
}
​
fn largest_char(list: &[char]) -> &char {
    let mut largest = &list[0];
​
    for item in list {
        if item > largest {
            largest = item;
        }
    }
​
    largest
}
​
fn main() {
    let number_list = vec![34, 50, 25, 100, 65];
​
    let result = largest_i32(&number_list);
    println!("The largest number is {}", result);
​
    let char_list = vec!['y', 'm', 'a', 'q'];
​
    let result = largest_char(&char_list);
    println!("The largest char is {}", result);
}

编译一下代码, 输出如下:

我们现在需要定义一个新函数, 引进泛型参数来消除这种因数据类型不同而导致的函数重复定义。为了参数化这个新函数中的这些类型,我们需要为类型参数命名,道理和给函数的形参起名一样。任何标识符都可以作为类型参数的名字。这里选用 T,因为传统上来说,Rust 的类型参数名字都比较短,通常仅为一个字母,同时,Rust 类型名的命名规范是首字母大写驼峰式命名法(UpperCamelCase)。T 作为 “type” 的缩写是大部分 Rust 程序员的首选。

如果要在函数体中使用参数,就必须在函数签名中声明它的名字,好让编译器知道这个名字指代的是什么。同理,当在函数签名中使用一个类型参数时,必须在使用它之前就声明它。为了定义泛型版本的 largest 函数,类型参数声明位于函数名称与参数列表中间的尖括号 <> 中,像这样:

fn largest<T>(list: &[T]) -> &T {

可以这样理解这个定义:函数 largest 有泛型类型 T。它有个参数 list,其类型是元素为 T 的 slice。largest 函数会返回一个与 T 相同类型的引用。

按照这个思想, 我们将代码改造如下:

fn largest<T>(list: &[T]) -> &T {
    let mut largest = &list[0];
​
    for item in list {
        if item > largest {
            largest = item;
        }
    }
​
    largest
}
​
fn main() {
    let number_list = vec![34, 50, 25, 100, 65];
​
    let result = largest(&number_list);
    println!("The largest number is {}", result);
​
    let char_list = vec!['y', 'm', 'a', 'q'];
​
    let result = largest(&char_list);
    println!("The largest char is {}", result);
}

一切似乎很顺利, 尝试编译这段代码, 编译器结果如下:

这次编译没有通过的原因Rust编译器用绿色标识出来了, 缺少一个: std:cmp::PartialOrd, 先暂且认为这个是Rust标准库要求的东西, 加上重新编译一下试试:

fn largest<T: std::cmp::PartialOrd>(list: &[T]) -> &T {
    let mut largest = &list[0];
​
    for item in list {
        if item > largest {
            largest = item;
        }
    }
​
    largest
}

重新编译结果如下:

我们在代码中下了一个断点, 能够执行到此处说明代码已经没有问题。实际上上面这个错误表明 largest 的函数体不能适用于 T 的所有可能的类型。因为在函数体需要比较 T 类型的值,不过它只能用于我们知道如何排序的类型。为了开启比较功能,标准库中定义的 std::cmp::PartialOrd trait 可以实现类型的比较功能, 我们限制 T 只对实现了 PartialOrd 的类型有效后代码就可以编译了,因为标准库为 i32char 实现了 PartialOrd

3.在结构体中使用泛型

同样也可以用 <> 语法来定义结构体,它包含一个或多个泛型参数类型字段。下面的代码片段定义了一个可以存放任何类型的 xy 坐标值的结构体 Point

struct Point<T> {
    x: T,
    y: T,
}
​
fn main() {
    let integer = Point { x: 5, y: 10 };
    let float = Point { x: 1.0, y: 4.0 };
}

其语法类似于函数定义中使用泛型。首先,必须在结构体名称后面的尖括号中声明泛型参数的名称。接着在结构体定义中可以指定具体数据类型的位置使用泛型类型。

注意 Point<T> 的定义中只使用了一个泛型类型,这个定义表明结构体 Point<T> 对于一些类型 T 是泛型的,而且字段 xy 都是 相同类型的,无论它具体是何类型。

如果尝试创建一个有不同类型值的 Point<T> 的实例, 看下面的代码:

struct Point<T> {
    x: T,
    y: T,
}
​
fn main() {
    let wont_work = Point { x: 5, y: 4.0 };
}

在这个例子中,当把整型值 5 赋值给 x 时,就告诉了编译器这个 Point<T> 实例中的泛型 T 全是整型。接着指定 y 为浮点值 4.0,因为它y被定义为与 x 相同类型,所以将会得到一个像这样的类型不匹配错误:

如果想要定义一个 xy 可以有不同类型且仍然是泛型的 Point 结构体,我们可以使用多个泛型类型参数。修改 Point 的定义为拥有两个泛型类型 TU。其中字段 xT 类型的,而字段 yU 类型的:

struct Point<T, U> {
    x: T,
    y: U,
}
​
fn main() {
    let both_integer = Point { x: 5, y: 10 };
    let both_float = Point { x: 1.0, y: 4.0 };
    let integer_and_float = Point { x: 5, y: 4.0 };
}

现在所有这些 Point 实例都合法了!我们可以在定义中使用任意多的泛型类型参数,不过太多的话,代码将难以阅读和理解。当你发现代码中需要很多泛型时,这可能表明你的代码需要重构分解成更小的结构。

4.枚举中使用泛型

和结构体类似,枚举也可以在成员中存放泛型数据类型。例如:

enum Option<T> {
    Some(T),
    None,
}

Option<T> 是一个拥有泛型 T 的枚举,它有两个成员:Some,它存放了一个类型 T 的值,和不存在任何值的None。通过 Option<T> 枚举可以表达有一个可能的值的抽象概念,同时因为 Option<T> 是泛型的,无论这个可能的值是什么类型都可以使用这个抽象。

枚举也可以拥有多个泛型类型, 例如:

enum Result<T, E> {
    Ok(T),
    Err(E),
}

Result 枚举有两个泛型类型,TEResult 有两个成员:Ok,它存放一个类型 T 的值,而 Err 则存放一个类型 E 的值。这个定义使得 Result 枚举能很方便的表达任何可能成功(返回 T 类型的值)也可能失败(返回 E 类型的值)的操作。

总结:当意识到代码中定义了多个结构体或枚举,它们不一样的地方只是其中的值的类型的时候,不妨通过泛型类型来避免重复。

5.方法定义中的泛型

在为结构体和枚举实现方法时, 一样也可以用泛型。看下面的代码:

struct Point<T> {
    x: T,
    y: T,
}
​
impl<T> Point<T> {
    fn x(&self) -> &T {
        &self.x
    }
}
​
fn main() {
    let p = Point { x: 5, y: 10 };
​
    println!("p.x = {}", p.x());
}

这里在 Point<T> 上定义了一个叫做 x 的方法来返回字段 x 中数据的引用。注意必须在 impl 后面声明 T,这样就可以在 Point<T> 上实现的方法中使用 T 了。通过在 impl 之后声明泛型 T,Rust 就知道 Point 的尖括号中的类型是泛型而不是具体类型。我们可以为泛型参数选择一个与结构体定义中声明的泛型参数所不同的名称,不过依照惯例使用了相同的名称。impl 中编写的方法声明了泛型类型可以定位为任何类型的实例,不管最终替换泛型类型的是何具体类型。

定义方法时也可以为泛型指定限制(constraint)。例如,可以选择为 Point<f32> 实例实现方法,而不是为泛型 Point 实例。代码如下:

impl Point<f32> {
    fn distance_from_origin(&self) -> f32 {
        (self.x.powi(2) + self.y.powi(2)).sqrt()
    }
}

这段代码意味着 Point<f32> 类型会有一个方法 distance_from_origin,而其他 T 不是 f32 类型的 Point<T> 实例则没有定义此方法。这个方法计算点实例与坐标 (0.0, 0.0) 之间的距离,并使用了只能用于浮点型的数学运算符。

结构体定义中的泛型类型参数并不总是与结构体方法签名中使用的泛型是同一类型。看下面的代码:

struct Point<X1, Y1> {
    x: X1,
    y: Y1,
}
​
impl<X1, Y1> Point<X1, Y1> {
    fn mixup<X2, Y2>(self, other: Point<X2, Y2>) -> Point<X1, Y2> {
        Point {
            x: self.x,
            y: other.y,
        }
    }
}
​
fn main() {
    let p1 = Point { x: 5, y: 10.4 };
    let p2 = Point { x: "Hello", y: 'c' };
​
    let p3 = p1.mixup(p2);
​
    println!("p3.x = {}, p3.y = {}", p3.x, p3.y);
}

在上面的代码中, Point 结构体使用了泛型类型 X1Y1,为 mixup 方法签名使用了 X2Y2 来使得示例更加清楚。这个方法用 selfPoint 类型的 x 值(类型 X1)和参数的 Point 类型的 y 值(类型 Y2)来创建一个新 Point 类型的实例

main 函数中,定义了一个有 i32 类型的 x(其值为 5)和 f64y(其值为 10.4)的 Pointp2 则是一个有着字符串 slice 类型的 x(其值为 "Hello")和 char 类型的 y(其值为c)的 Point。在 p1 上以 p2 作为参数调用 mixup 会返回一个 p3,它会有一个 i32 类型的 x,因为 x 来自 p1,并拥有一个 char 类型的 y,因为 y 来自 p2println! 会打印出 p3.x = 5, p3.y = c

这个例子的目的是展示一些泛型通过 impl 声明而另一些通过方法定义声明的情况。这里泛型参数 X1Y1 声明于 impl 之后,因为它们与结构体定义相对应。而泛型参数 X2Y2 声明于 fn mixup 之后,因为它们只是相对于方法本身的。

6.泛型代码性能

不用担心使用泛型会比使用具体类型的代码性能低。

Rust 通过在编译时进行泛型代码的 单态化monomorphization)来保证效率。单态化是一个通过填充编译时使用的具体类型,将通用代码转换为特定代码的过程。

在这个过程中,编译器寻找所有泛型代码被调用的位置并使用泛型代码针对具体类型生成代码。

下面看看这个怎样用于标准库中的 Option 枚举:

let integer = Some(5);
let float = Some(5.0);

当 Rust 编译这些代码的时候,它会进行单态化。编译器会读取传递给 Option<T> 的值并发现有两种 Option<T>:一个对应 i32 另一个对应 f64。为此,它会将泛型定义 Option<T> 展开为两个针对 i32f64 的定义,接着将泛型定义替换为这两个具体的定义。

编译器生成的单态化版本的代码看起来像这样(编译器会使用不同于如下假想的名字):

enum Option_i32 {
    Some(i32),
    None,
}
​
enum Option_f64 {
    Some(f64),
    None,
}
​
fn main() {
    let integer = Option_i32::Some(5);
    let float = Option_f64::Some(5.0);
}

泛型 Option<T> 被编译器替换为了具体的定义。因为 Rust 会将每种情况下的泛型代码编译为具体类型,使用泛型没有运行时开销。当代码运行时,它的执行效率就跟好像手写每个具体定义的重复代码一样。这个单态化过程正是 Rust 泛型在运行时极其高效的原因。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1222158.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MATLAB Simulink和S7-1200PLC MOBUSTCP通信

MATLAB Simulink和SMART PLC OPC通信详细配置请查看下面文章链接: MATLAB和西门子SMART PLC OPC通信-CSDN博客文章浏览阅读749次,点赞26次,收藏2次。西门子S7-200SMART PLC OPC软件的下载和使用,请查看下面文章Smart 200PLC PC Access SMART OPC通信_基于pc access smart的…

瑞吉外卖Day06

1.用户地址 1.1实体类 /*** 地址簿*/ Data public class AddressBook implements Serializable {private static final long serialVersionUID 1L;private Long id;//用户idprivate Long userId;//收货人private String consignee;//手机号private String phone;//性别 0 女…

集软件库、论坛、社区、工具箱、积分商城、会员体系、在线商城一体的后台系统+HBuilderX 前端软件社区

集软件库、论坛、社区、工具箱、积分商城、会员体系、在线商城等多个功能于一体的全面后台系统加上强大的HBuilderX前端软件社区&#xff0c;为用户提供了全面的应用开发和交流平台 企业猫提供了完善的后台搭建服务&#xff0c;通过该服务&#xff0c;用户可以方便地搭建出所需…

关于FreeRTOS函数xSemaphoreGiveFromISR卡死的问题

0. 概述 关于FreeRTOS函数xSemaphoreGiveFromISR卡死的问题 1. 遇到的问题 在使用FreeRTOS调试激光雷达检测面积的项目的时候&#xff0c;遇到一个现象&#xff1a;在新加了一个线程之后&#xff0c;把程序下载到板子之后程序不会运行&#xff08;实际上已经运行了&#xff…

C语言二进制数(ZZULIOJ1068:二进制数)

题目描述 将一个二进制数&#xff0c;转换为对应的十进制数。 输入&#xff1a;输入一个只含有’0’和’1’的字符串&#xff0c;以回车结束&#xff0c;表示一个二进制数。该二进制数无符号位&#xff0c;长度不超过31。 输出&#xff1a;输出一个整数&#xff0c;为该二进制数…

【C语言期末不挂科——指针篇1】

C语言指针初阶 文章目录 C语言指针初阶**什么是指针&#xff1f;**   **1&#xff09;初识指针**  **2&#xff09;地址的大小**  **3&#xff09;指针变量** **指针的类型**   **1)指针对整数加减运算**  **2&#xff09;指针的解引用** **野指针**  **1&#xff…

linux使用spi读取icm20608传感器数值一直显示0

1.这个问题困扰了我两天&#xff0c;把下面这些uart2相关引脚屏蔽掉也不行&#xff0c;ICM20608 ID 读出的数值一直为 0X0 pinctrl_flexcan2: flexcan2grp{ fsl,pins < /* MX6UL_PAD_UART2_RTS_B__FLEXCAN2_RX 0x1b020*/ /* MX6UL_PAD_UART2_CTS_B__FLEXCAN2_TX 0x1b020*/…

关于Ultra HDR Image的那些事

一、什么是Ultra HDR Image 2023年10月初&#xff0c;google正式发布了Android 14。该版本中引入了一个新的功能Ultra HDR Image&#xff0c;被誉为”图像技术的未来”。之前Android版本各手机厂商或许有自己的HDR图片技术&#xff0c;本文这里重点分析下Android14上google的实…

JavaScript 浮点数运算的精度问题及解决

JavaScript 浮点数运算的精度问题及解决 在 JavaScript 中整数和浮点数都属于 Number 数据类型&#xff0c;当浮点数做数学运算的时候&#xff0c;你经常会发现一些问题&#xff0c;举几个例子&#xff1a; 0.1 0.2 0.30000000000000004 console.log(0.1 0.2) 0.3000000…

springcloud新闻发布系统源码

开发技术&#xff1a; jdk1.8&#xff0c;mysql5.7&#xff0c;nodejs&#xff0c;idea&#xff0c;vscode springcloud springboot mybatis vue elementui 功能介绍&#xff1a; 用户端&#xff1a; 登录注册 首页显示搜索新闻&#xff0c;新闻分类&#xff0c;新闻列表…

VS+Qt+C++ Yolov8物体识别窗体程序onnx模型

程序示例精选 VSQtC Yolov8物体识别窗体程序onnx模型 如需安装运行环境或远程调试&#xff0c;见文章底部个人QQ名片&#xff0c;由专业技术人员远程协助&#xff01; 前言 这篇博客针对《VSQtC Yolov8物体识别窗体程序onnx模型》编写代码&#xff0c;代码整洁&#xff0c;规…

【Hello Go】Go语言工程管理

工程管理 工作区工作区介绍GOPATH设置 包自定义包main包main函数和init函数导入包点操作别名操作_操作 测试案例GOPATH配置go install使用 在我们实际的工作中 直接运用到编译器进行编译链接的场景少之又少 这是因为 在工程中不会只有一个源文件 并且源文件之间也有着相互依赖…

java学习part05

43-流程控制-使用Scanner类从键盘获取数据_哔哩哔哩_bilibili 1.接收输入 步骤 例子 2.生成随机数 3.switch-case 4.for 5.while

IDEA插件下载到本地

IDEA插件下载到本地 官网下载【点击跳转】

基于DE10-Standard Cyclone V SoC FPGA学习---开发板简介

基于DE10-Standard Cyclone V SoC FPGA学习---开发板简介 简介产品规格基于 ARM 的 HPS配置与调试存储器件通讯连接头显示器音频视频输入模数转换器开关、按钮、指示器传感器电源 DE10-Standard 开发板系统框图Connect HTG 组件配置设计资源其他资源 简介 开发板资料 见 DE10-…

rv1126-rv1109-openssh

这是一个工具&#xff0c;可以通过ssh远程登录来操作&#xff0c;非常逆天&#xff01; 于是rv1109代码自身自带有openssh 所以只需要打开config即可 diff --git a/buildroot/configs/rockchip_rv1126_rv1109_spi_nand_defconfig b/buildroot/configs/rockchip_rv1126_rv1109…

Pytorch plt.scatter()函数用法

一.scatter&#xff08;&#xff09;函数的定义 matplotlib.pyplot.scatter(x, y, sNone, cNone, markerNone, cmapNone, normNone, vminNone, vmaxNone, alphaNone, linewidthsNone, vertsNone, edgecolorsNone, *, dataNone, **kwargs) 特征值作用x&#xff0c;y绘制散点图…

MAC电脑连接外接显示屏,颜色显示有问题,又粉、紫色蒙版,问题处理(1)

问题描述 买了一个显示器&#xff0c;想给mac做分屏使用&#xff0c;结果连上之后发现&#xff0c;整个屏幕像是被蒙上了一层紫色的蒙版。 就像下面展示的一样&#xff1a; 解决 将显示器颜色空间改为RGB颜色空间即可。 打开显示器菜单&#xff0c;找到颜色空间选项&#…

(六)什么是Vite——热更新时vite、webpack做了什么

vite分享ppt&#xff0c;感兴趣的可以下载&#xff1a; ​​​​​​​Vite分享、原理介绍ppt 什么是vite系列目录&#xff1a; &#xff08;一&#xff09;什么是Vite——vite介绍与使用-CSDN博客 &#xff08;二&#xff09;什么是Vite——Vite 和 Webpack 区别&#xff0…

2023数维杯数学建模C题完整版本

已经完成全部版本&#xff0c;获取请查看文末下方名片 摘要 随着人工智能在多个领域的快速发展&#xff0c;其在文本生成上的应用引起了广泛关注。本研究聚焦于辨识人工智能&#xff08;AI&#xff09;生成文本的基本规则&#xff0c;并探究AI文本的检测及其与人类文本的区分…