swin unetr的3D语义分割

news2024/10/5 13:02:30

基于monai库。其实我不是很喜欢这种,可扩展性太差了,除非说你想快速在自己的数据集上出结果。但是它的transform可以对3d医学图像增强操作,比torch的transform强一点,因为它的数据增强输入是(x,y,z)h,w,d格式的,我还没有试过单独用它的transform来结合torch训练。

前提

pip install monai

目录结构

在这里插入图片描述

train.py

from nets.swin_model import GetSwinUnetr
import torch
from utils.dataloaderd import GetDataLoader
from monai.losses import DiceCELoss
from monai.metrics import DiceMetric
from monai.inferers import sliding_window_inference
from tqdm import tqdm
import os
import matplotlib.pyplot as plt
from torch import nn

os.environ["CUDA_VISIBLE_DEVICES"] = "2,3"


from monai.data import (
    ThreadDataLoader,
    CacheDataset,
    load_decathlon_datalist,
    decollate_batch,
    set_track_meta,
)

from monai.transforms import (AsDiscrete,)


def validation(epoch_iterator_val):
    model.eval()
    with torch.no_grad():
        for batch in epoch_iterator_val:
            val_inputs, val_labels = (batch["image"].cuda(), batch["label"].cuda())
            with torch.cuda.amp.autocast():
                val_outputs = sliding_window_inference(val_inputs, (cutSize[0], cutSize[1], cutSize[2]), 1, model)
            val_labels_list = decollate_batch(val_labels)
            val_labels_convert = [post_label(val_label_tensor) for val_label_tensor in val_labels_list]
            val_outputs_list = decollate_batch(val_outputs)
            val_output_convert = [post_pred(val_pred_tensor) for val_pred_tensor in val_outputs_list]
            dice_metric(y_pred=val_output_convert, y=val_labels_convert)
            epoch_iterator_val.set_description("Validate (%d / %d Steps)" % (global_step, 10.0))
        mean_dice_val = dice_metric.aggregate().item()
        dice_metric.reset()
    return mean_dice_val

def train(global_step, train_loader, dice_val_best, global_step_best):
    model.train()
    epoch_loss = 0
    step = 0
    epoch_iterator = tqdm(train_loader, desc="Training (X / X Steps) (loss=X.X)", dynamic_ncols=True)
    for step, batch in enumerate(epoch_iterator):
        step += 1
        x, y = (batch["image"].cuda(), batch["label"].cuda())
        # with torch.cuda.amp.autocast():
        logit_map = model(x)
        loss = loss_function(logit_map, y)
        # scaler.scale(loss).backward()
        epoch_loss += loss.item()
        # scaler.unscale_(optimizer)
        # scaler.step(optimizer)
        # scaler.update()
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        epoch_iterator.set_description(f"Training ({global_step} / {max_iterations} Steps) (loss={loss:2.5f})")
        if (global_step % eval_num == 0 and global_step != 0) or global_step == max_iterations:
            epoch_iterator_val = tqdm(val_loader, desc="Validate (X / X Steps) (dice=X.X)", dynamic_ncols=True)
            dice_val = validation(epoch_iterator_val)
            epoch_loss /= step
            epoch_loss_values.append(epoch_loss)
            metric_values.append(dice_val)
            if dice_val > dice_val_best:
                dice_val_best = dice_val
                global_step_best = global_step
                torch.save(model.state_dict(), os.path.join(root_dir, "best_metric_model.pth"))
                print(
                    "Model Was Saved ! Current Best Avg. Dice: {} Current Avg. Dice: {}".format(dice_val_best, dice_val)
                )
            else:
                print(
                    "Model Was Not Saved ! Current Best Avg. Dice: {} Current Avg. Dice: {}".format(
                        dice_val_best, dice_val
                    )
                )
        global_step += 1

    return global_step, dice_val_best, global_step_best


if __name__ == '__main__':
    data_dir = "/home/data/hablee_data_dir/aorta2023/"
    root_dir = "/home/hbli/pythonFiles3/c_swinUnetr_torch/"
    split_json = "dataset_0.json"
    cutSize = [64,64,32]
    numClasses = 3
    batchSize = 2
    train_loader,val_loader,val_ds = GetDataLoader(
        data_dir=data_dir,split_json=split_json,
        cut_size=cutSize,batch_size=batchSize)

    model = GetSwinUnetr(cut_size=cutSize,num_classes=numClasses)
    weight = torch.load("./best_metric_model.pth")
    model.load_state_dict(weight)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    gpu_counts = torch.cuda.device_count()
    if gpu_counts>1:
        batch_size = batchSize * gpu_counts
        model = nn.DataParallel(model)
    
    model.to(device=device)
    
    # torch.backends.cudnn.benchmark = True
    loss_function = DiceCELoss(to_onehot_y=True, softmax=True)
    optimizer = torch.optim.AdamW(model.parameters(), lr=1e-4, weight_decay=1e-5)
    # scaler = torch.cuda.amp.GradScaler()

    max_iterations = 30000
    eval_num = 500
    post_label = AsDiscrete(to_onehot=numClasses)
    post_pred = AsDiscrete(argmax=True, to_onehot=numClasses)
    dice_metric = DiceMetric(include_background=True, reduction="mean", get_not_nans=False)
    global_step = 0
    dice_val_best = 0.0
    global_step_best = 0
    epoch_loss_values = []
    metric_values = []
    while global_step < max_iterations:
        global_step, dice_val_best, global_step_best = train(global_step, train_loader, dice_val_best, global_step_best)

    print(f"train completed, best_metric: {dice_val_best:.4f} " f"at iteration: {global_step_best}")

    plt.figure("train", (12, 6))
    plt.subplot(1, 2, 1)
    plt.title("Iteration Average Loss")
    x = [eval_num * (i + 1) for i in range(len(epoch_loss_values))]
    y = epoch_loss_values
    plt.xlabel("Iteration")
    plt.plot(x, y)
    plt.subplot(1, 2, 2)
    plt.title("Val Mean Dice")
    x = [eval_num * (i + 1) for i in range(len(metric_values))]
    y = metric_values
    plt.xlabel("Iteration")
    plt.plot(x, y)
    plt.show()
    plt.savefig('loss.jpg')


    case_num = 4
    slice_map = {
    "72.nii.gz": 50,
    "97.nii.gz": 50,
    "82.nii.gz": 50,
    "153.nii.gz": 50,
    "54.nii.gz": 50,
    "104.nii.gz": 50
    }
    model.load_state_dict(torch.load(os.path.join(root_dir, "best_metric_model.pth")))
    model.eval()
    with torch.no_grad():
        img_name = os.path.split(val_ds[case_num]["image"].meta["filename_or_obj"])[1]
        img = val_ds[case_num]["image"]
        label = val_ds[case_num]["label"]
        val_inputs = torch.unsqueeze(img, 1).cuda()
        val_labels = torch.unsqueeze(label, 1).cuda()
        val_outputs = sliding_window_inference(val_inputs, (cutSize[0], cutSize[1], cutSize[2]), 1, model, overlap=0.8)
        plt.figure("check", (18, 6))
        plt.subplot(1, 3, 1)
        plt.title("image")
        plt.imshow(val_inputs.cpu().numpy()[0, 0, :, :, slice_map[img_name]], cmap="gray")
        plt.subplot(1, 3, 2)
        plt.title("label")
        plt.imshow(val_labels.cpu().numpy()[0, 0, :, :, slice_map[img_name]])
        plt.subplot(1, 3, 3)
        plt.title("output")
        plt.imshow(torch.argmax(val_outputs, dim=1).detach().cpu()[0, :, :, slice_map[img_name]])
        plt.show()

    plt.savefig("result.jpg")
    

nets/swin_model.py

# import os
# os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
from monai.networks.nets.swin_unetr import SwinUNETR

# import torch
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

def GetSwinUnetr(cut_size,num_classes):
    model = SwinUNETR(
        img_size=(cut_size[0], cut_size[1], cut_size[2]),
        in_channels=1,
        out_channels=num_classes,
        feature_size=48,
        use_checkpoint=True,)

    return model

utils/dataloaderd.py

import os
import shutil
import tempfile

import matplotlib.pyplot as plt
from tqdm import tqdm
import torch

from monai.losses import DiceCELoss
from monai.inferers import sliding_window_inference
from monai.transforms import (
    AsDiscrete,
    Compose,
    CropForegroundd,
    LoadImaged,
    Orientationd,
    RandFlipd,
    RandCropByPosNegLabeld,
    RandShiftIntensityd,
    ScaleIntensityRanged,
    Spacingd,
    RandRotate90d,
    EnsureTyped,
)

from monai.metrics import DiceMetric
from monai.networks.nets import SwinUNETR
from monai.config import print_config

from monai.data import (
    DataLoader,
    CacheDataset,
    load_decathlon_datalist,
    decollate_batch,
    set_track_meta,
)


num_samples = 4
os.environ["CUDA_VISIBLE_DEVICES"] = "2,3"
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")



val_transforms = Compose(
    [
        LoadImaged(keys=["image", "label"], ensure_channel_first=True),
        ScaleIntensityRanged(keys=["image"], a_min=-175, a_max=250, b_min=0.0, b_max=1.0, clip=True),
        CropForegroundd(keys=["image", "label"], source_key="image"),
        Orientationd(keys=["image", "label"], axcodes="RAS"),
        Spacingd(
            keys=["image", "label"],
            pixdim=(1.5, 1.5, 2.0),
            mode=("bilinear", "nearest"),
        ),
        EnsureTyped(keys=["image", "label"], device=device, track_meta=True),
    ]
)


def GetDataLoader(data_dir,split_json,cut_size,batch_size):
    train_transforms = Compose(
    [
        LoadImaged(keys=["image", "label"], ensure_channel_first=True),
        ScaleIntensityRanged(
            keys=["image"],
            a_min=-175,
            a_max=250,
            b_min=0.0,
            b_max=1.0,
            clip=True,
        ),
        CropForegroundd(keys=["image", "label"], source_key="image"),
        Orientationd(keys=["image", "label"], axcodes="RAS"),
        Spacingd(
            keys=["image", "label"],
            pixdim=(1.5, 1.5, 2.0),
            mode=("bilinear", "nearest"),
        ),
        EnsureTyped(keys=["image", "label"], device=device, track_meta=False),
        RandCropByPosNegLabeld(
            keys=["image", "label"],
            label_key="label",
            spatial_size=(cut_size[0], cut_size[1], cut_size[2]),
            pos=1,
            neg=1,
            num_samples=num_samples,
            image_key="image",
            image_threshold=0,
        ),
        RandFlipd(
            keys=["image", "label"],
            spatial_axis=[0],
            prob=0.10,
        ),
        RandFlipd(
            keys=["image", "label"],
            spatial_axis=[1],
            prob=0.10,
        ),
        RandFlipd(
            keys=["image", "label"],
            spatial_axis=[2],
            prob=0.10,
        ),
        RandRotate90d(
            keys=["image", "label"],
            prob=0.10,
            max_k=3,
        ),
        RandShiftIntensityd(
            keys=["image"],
            offsets=0.10,
            prob=0.50,
        ),
    ]
    )

    datasets = data_dir + split_json
    datalist = load_decathlon_datalist(datasets, True, "training")
    val_files = load_decathlon_datalist(datasets, True, "validation")
    train_ds = CacheDataset(
        data=datalist,
        transform=train_transforms,
        cache_num=24,
        cache_rate=1.0,
        num_workers=0,
    )
    train_loader = DataLoader(train_ds, batch_size=batch_size, shuffle=True, num_workers=0, pin_memory=False)
    val_ds = CacheDataset(data=val_files, transform=val_transforms, cache_num=6, cache_rate=1.0, num_workers=0)
    val_loader = DataLoader(val_ds, batch_size=batch_size, shuffle=False, num_workers=0, pin_memory=False)
    
    return train_loader,val_loader,val_ds


# if __name__ == '__main__':
#     data_dir = "/home/data/hablee_data_dir/aorta2023/"
#     split_json = "dataset_0.json"

#     datasets = data_dir + split_json
#     datalist = load_decathlon_datalist(datasets, True, "training")
#     val_files = load_decathlon_datalist(datasets, True, "validation")
#     train_ds = CacheDataset(
#         data=datalist,
#         transform=train_transforms,
#         cache_num=24,
#         cache_rate=1.0,
#         num_workers=4,
#     )
#     train_loader = DataLoader(train_ds, batch_size=1, shuffle=True, num_workers=4, pin_memory=True)
#     val_ds = CacheDataset(data=val_files, transform=val_transforms, cache_num=6, cache_rate=1.0, num_workers=4)
#     val_loader = DataLoader(val_ds, batch_size=1, shuffle=False, num_workers=4, pin_memory=True)

    # slice_map = {
    # "72.nii.gz": 50,
    # "97.nii.gz": 50,
    # "82.nii.gz": 50,
    # "153.nii.gz": 50,
    # "54.nii.gz": 50,
    # "104.nii.gz": 50
    # }

    # case_num = 2
    # img_name = os.path.split(val_ds[case_num]["image"].meta["filename_or_obj"])[1]
    # img = val_ds[case_num]["image"]
    # label = val_ds[case_num]["label"]
    # img_shape = img.shape
    # label_shape = label.shape
    # print(f"image shape: {img_shape}, label shape: {label_shape}")
    # plt.figure("image", (18, 6))
    # plt.subplot(1, 2, 1)
    # plt.title("image")
    # plt.imshow(img[0, :, :, slice_map[img_name]].detach().cpu(), cmap="gray")
    # plt.subplot(1, 2, 2)
    # plt.title("label")
    # plt.imshow(label[0, :, :, slice_map[img_name]].detach().cpu())
    # plt.show()
    # plt.savefig("a.jpg")

就这几个文件就可以训练了。

数据

数据都是.nii.gz格式的
在这里插入图片描述

dataset_0.json

{
    "description": "zdm fjm",
    "labels": {
        "0": "background",
        "1": "zdm",
        "2": "fjm"
    },
    "licence": "hablee",
    "modality": {
        "0": "CT"
    },
    "name": "zdm fjm",
    "numTest": 5,
    "numTraining": 100,
    "reference": "None",
    "release": "2023/02/14",
    "tensorImageSize": "3D",
    "test":[
        "images/100.nii.gz",
        "images/102.nii.gz",
        "images/103.nii.gz",
        "images/104.nii.gz",
        "images/105.nii.gz"
    ],
    "training":[
            {
            "image": "images/72.nii.gz",
            "label": "labels/72.nii.gz"
            },
            {
            "image": "images/97.nii.gz",
            "label": "labels/97.nii.gz"
            },
            {
            "image": "images/82.nii.gz",
            "label": "labels/82.nii.gz"
            },
            {
            "image": "images/153.nii.gz",
            "label": "labels/153.nii.gz"
            },
            {
            "image": "images/54.nii.gz",
            "label": "labels/54.nii.gz"
            },
            {
            "image": "images/104.nii.gz",
            "label": "labels/104.nii.gz"
            },
            {
            "image": "images/110.nii.gz",
            "label": "labels/110.nii.gz"
            },
            {
            "image": "images/89.nii.gz",
            "label": "labels/89.nii.gz"
            },
            {
            "image": "images/95.nii.gz",
            "label": "labels/95.nii.gz"
            },
            {
            "image": "images/129.nii.gz",
            "label": "labels/129.nii.gz"
            },
            {
            "image": "images/118.nii.gz",
            "label": "labels/118.nii.gz"
            },
            {
            "image": "images/141.nii.gz",
            "label": "labels/141.nii.gz"
            },
            {
            "image": "images/134.nii.gz",
            "label": "labels/134.nii.gz"
            },
            {
            "image": "images/146.nii.gz",
            "label": "labels/146.nii.gz"
            },
            {
            "image": "images/100.nii.gz",
            "label": "labels/100.nii.gz"
            },
            {
            "image": "images/142.nii.gz",
            "label": "labels/142.nii.gz"
            },
            {
            "image": "images/85.nii.gz",
            "label": "labels/85.nii.gz"
            },
            {
            "image": "images/154.nii.gz",
            "label": "labels/154.nii.gz"
            },
            {
            "image": "images/103.nii.gz",
            "label": "labels/103.nii.gz"
            },
            {
            "image": "images/59.nii.gz",
            "label": "labels/59.nii.gz"
            },
            {
            "image": "images/84.nii.gz",
            "label": "labels/84.nii.gz"
            },
            {
            "image": "images/124.nii.gz",
            "label": "labels/124.nii.gz"
            },
            {
            "image": "images/125.nii.gz",
            "label": "labels/125.nii.gz"
            },
            {
            "image": "images/58.nii.gz",
            "label": "labels/58.nii.gz"
            },
            {
            "image": "images/68.nii.gz",
            "label": "labels/68.nii.gz"
            },
            {
            "image": "images/81.nii.gz",
            "label": "labels/81.nii.gz"
            },
            {
            "image": "images/115.nii.gz",
            "label": "labels/115.nii.gz"
            },
            {
            "image": "images/77.nii.gz",
            "label": "labels/77.nii.gz"
            },
            {
            "image": "images/127.nii.gz",
            "label": "labels/127.nii.gz"
            },
            {
            "image": "images/131.nii.gz",
            "label": "labels/131.nii.gz"
            },
            {
            "image": "images/147.nii.gz",
            "label": "labels/147.nii.gz"
            },
            {
            "image": "images/73.nii.gz",
            "label": "labels/73.nii.gz"
            },
            {
            "image": "images/102.nii.gz",
            "label": "labels/102.nii.gz"
            },
            {
            "image": "images/66.nii.gz",
            "label": "labels/66.nii.gz"
            },
            {
            "image": "images/67.nii.gz",
            "label": "labels/67.nii.gz"
            },
            {
            "image": "images/135.nii.gz",
            "label": "labels/135.nii.gz"
            },
            {
            "image": "images/149.nii.gz",
            "label": "labels/149.nii.gz"
            },
            {
            "image": "images/48.nii.gz",
            "label": "labels/48.nii.gz"
            },
            {
            "image": "images/83.nii.gz",
            "label": "labels/83.nii.gz"
            },
            {
            "image": "images/145.nii.gz",
            "label": "labels/145.nii.gz"
            },
            {
            "image": "images/45.nii.gz",
            "label": "labels/45.nii.gz"
            },
            {
            "image": "images/61.nii.gz",
            "label": "labels/61.nii.gz"
            },
            {
            "image": "images/122.nii.gz",
            "label": "labels/122.nii.gz"
            },
            {
            "image": "images/96.nii.gz",
            "label": "labels/96.nii.gz"
            },
            {
            "image": "images/60.nii.gz",
            "label": "labels/60.nii.gz"
            },
            {
            "image": "images/144.nii.gz",
            "label": "labels/144.nii.gz"
            },
            {
            "image": "images/91.nii.gz",
            "label": "labels/91.nii.gz"
            },
            {
            "image": "images/111.nii.gz",
            "label": "labels/111.nii.gz"
            },
            {
            "image": "images/114.nii.gz",
            "label": "labels/114.nii.gz"
            },
            {
            "image": "images/90.nii.gz",
            "label": "labels/90.nii.gz"
            },
            {
            "image": "images/52.nii.gz",
            "label": "labels/52.nii.gz"
            },
            {
            "image": "images/132.nii.gz",
            "label": "labels/132.nii.gz"
            },
            {
            "image": "images/107.nii.gz",
            "label": "labels/107.nii.gz"
            },
            {
            "image": "images/109.nii.gz",
            "label": "labels/109.nii.gz"
            },
            {
            "image": "images/139.nii.gz",
            "label": "labels/139.nii.gz"
            },
            {
            "image": "images/143.nii.gz",
            "label": "labels/143.nii.gz"
            },
            {
            "image": "images/119.nii.gz",
            "label": "labels/119.nii.gz"
            },
            {
            "image": "images/55.nii.gz",
            "label": "labels/55.nii.gz"
            },
            {
            "image": "images/80.nii.gz",
            "label": "labels/80.nii.gz"
            },
            {
            "image": "images/53.nii.gz",
            "label": "labels/53.nii.gz"
            },
            {
            "image": "images/120.nii.gz",
            "label": "labels/120.nii.gz"
            },
            {
            "image": "images/65.nii.gz",
            "label": "labels/65.nii.gz"
            },
            {
            "image": "images/88.nii.gz",
            "label": "labels/88.nii.gz"
            },
            {
            "image": "images/47.nii.gz",
            "label": "labels/47.nii.gz"
            },
            {
            "image": "images/57.nii.gz",
            "label": "labels/57.nii.gz"
            },
            {
            "image": "images/130.nii.gz",
            "label": "labels/130.nii.gz"
            },
            {
            "image": "images/108.nii.gz",
            "label": "labels/108.nii.gz"
            },
            {
            "image": "images/151.nii.gz",
            "label": "labels/151.nii.gz"
            },
            {
            "image": "images/113.nii.gz",
            "label": "labels/113.nii.gz"
            },
            {
            "image": "images/71.nii.gz",
            "label": "labels/71.nii.gz"
            },
            {
            "image": "images/46.nii.gz",
            "label": "labels/46.nii.gz"
            },
            {
            "image": "images/105.nii.gz",
            "label": "labels/105.nii.gz"
            },
            {
            "image": "images/148.nii.gz",
            "label": "labels/148.nii.gz"
            },
            {
            "image": "images/112.nii.gz",
            "label": "labels/112.nii.gz"
            },
            {
            "image": "images/106.nii.gz",
            "label": "labels/106.nii.gz"
            },
            {
            "image": "images/49.nii.gz",
            "label": "labels/49.nii.gz"
            },
            {
            "image": "images/140.nii.gz",
            "label": "labels/140.nii.gz"
            },
            {
            "image": "images/92.nii.gz",
            "label": "labels/92.nii.gz"
            },
            {
            "image": "images/137.nii.gz",
            "label": "labels/137.nii.gz"
            },
            {
            "image": "images/74.nii.gz",
            "label": "labels/74.nii.gz"
            },
            {
            "image": "images/62.nii.gz",
            "label": "labels/62.nii.gz"
            },
            {
            "image": "images/99.nii.gz",
            "label": "labels/99.nii.gz"
            },
            {
            "image": "images/150.nii.gz",
            "label": "labels/150.nii.gz"
            },
            {
            "image": "images/75.nii.gz",
            "label": "labels/75.nii.gz"
            },
            {
            "image": "images/98.nii.gz",
            "label": "labels/98.nii.gz"
            },
            {
            "image": "images/86.nii.gz",
            "label": "labels/86.nii.gz"
            },
            {
            "image": "images/50.nii.gz",
            "label": "labels/50.nii.gz"
            },
            {
            "image": "images/93.nii.gz",
            "label": "labels/93.nii.gz"
            },
            {
            "image": "images/138.nii.gz",
            "label": "labels/138.nii.gz"
            },
            {
            "image": "images/126.nii.gz",
            "label": "labels/126.nii.gz"
            },
            {
            "image": "images/69.nii.gz",
            "label": "labels/69.nii.gz"
            },
            {
            "image": "images/64.nii.gz",
            "label": "labels/64.nii.gz"
            },
            {
            "image": "images/136.nii.gz",
            "label": "labels/136.nii.gz"
            },
            {
            "image": "images/51.nii.gz",
            "label": "labels/51.nii.gz"
            },
            {
            "image": "images/70.nii.gz",
            "label": "labels/70.nii.gz"
            },
            {
            "image": "images/56.nii.gz",
            "label": "labels/56.nii.gz"
            },
            {
            "image": "images/128.nii.gz",
            "label": "labels/128.nii.gz"
            },
            {
            "image": "images/76.nii.gz",
            "label": "labels/76.nii.gz"
            },
            {
            "image": "images/123.nii.gz",
            "label": "labels/123.nii.gz"
            },
            {
            "image": "images/152.nii.gz",
            "label": "labels/152.nii.gz"
            }
    ],
    "validation":[
        {
            "image": "images/72.nii.gz",
            "label": "labels/72.nii.gz"
            },
            {
            "image": "images/97.nii.gz",
            "label": "labels/97.nii.gz"
            },
            {
            "image": "images/82.nii.gz",
            "label": "labels/82.nii.gz"
            },
            {
            "image": "images/153.nii.gz",
            "label": "labels/153.nii.gz"
            },
            {
            "image": "images/54.nii.gz",
            "label": "labels/54.nii.gz"
            },
            {
            "image": "images/104.nii.gz",
            "label": "labels/104.nii.gz"
            }
    ]
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1222036.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

竞赛 题目:基于机器视觉opencv的手势检测 手势识别 算法 - 深度学习 卷积神经网络 opencv python

文章目录 1 简介2 传统机器视觉的手势检测2.1 轮廓检测法2.2 算法结果2.3 整体代码实现2.3.1 算法流程 3 深度学习方法做手势识别3.1 经典的卷积神经网络3.2 YOLO系列3.3 SSD3.4 实现步骤3.4.1 数据集3.4.2 图像预处理3.4.3 构建卷积神经网络结构3.4.4 实验训练过程及结果 3.5 …

FPGA基础以太网

以太网数据通信 物理层&#xff1a;网线网卡&#xff08;PHY芯片&#xff09; 数据链路层&#xff1a;Mac层(数据有效传输&#xff09; 如图所示&#xff1a;FPGA中的Mac层中的MII接口负责控制PHY芯片&#xff0c;PHY芯片通过网线与PC端进行以太网数据传输。 FPGA中&#xff…

linux高级篇基础理论四(rsync,inotify,squid,KVM虚拟机)

♥️作者&#xff1a;小刘在C站 ♥️个人主页&#xff1a; 小刘主页 ♥️不能因为人生的道路坎坷,就使自己的身躯变得弯曲;不能因为生活的历程漫长,就使求索的 脚步迟缓。 ♥️学习两年总结出的运维经验&#xff0c;以及思科模拟器全套网络实验教程。专栏&#xff1a;云计算技…

利用NVIDIA DALI读取视频帧

1. NVIDIA DALI简介 NVIDIA DALI全称是NVIDIA Data Loading Library&#xff0c;是一个用GPU加速的数据加载和预处理库&#xff0c;可用于图像、视频和语音数据的加载和处理&#xff0c;从而为深度学习的训练和推理加速。 NVIDIA DALI库的出发点是&#xff0c;深度学习应用中…

springboot引入redisson分布式锁及原理

1.引入依赖 <dependency><groupId>org.redisson</groupId><artifactId>redisson</artifactId><version>3.13.6</version> </dependency>2.配置类创建bean /*** author qujingye* Classname RedissonConfig* Description TOD…

相关系数和协方差的关系与区别

相关系数和协方差都是用来衡量两个变量之间关系的统计量&#xff0c;它们在描述变量之间的线性关系上提供了一些信息。下面是它们的关系与区别&#xff1a; 关系&#xff1a; 相关系数的计算涉及到协方差。相关系数等于协方差除以两个变量的标准差的乘积。具体而言&#xff0c…

深度优化数据库性能:Linux 内核参数调整解析

点击上方蓝字关注我 数据库服务器性能的优化是每个IT团队关注的焦点之一。除了数据库引擎的优化之外&#xff0c;合理调整操作系统的内核参数也是提高数据库性能的关键。本文将解析一些常见的 Linux 内核参数&#xff0c;以及它们在数据库服务器优化中的作用和建议的值。 1. 参…

Django学习日志07

多表查询&#xff08;跨表查询&#xff09; 子查询&#xff1a;分步查询 链表查询&#xff1a;把多个有关系的表拼接成一个大表(虚拟表) inner join left join 展示左表所有数据数据&#xff0c;右表展示符合查询条件的数据&#xff0c;查询不到的用null填充 …

工程建设智慧施工云平台源码 智慧工地平台源码

智慧工地平台源码 工程建设智慧施工云平台源码 技术框架&#xff1a;微服务架构JavaSpring Cloud UniApp MySql 智慧工地平台是一种智慧型、系统性的工地信息化解决方案&#xff0c;它把现代信息技术融入到建设工程管理中&#xff0c;协调各方资源&#xff0c;优化施工过程&…

LeetCode题 338比特位计数,20有效的括号,415字符串相加

目录 338比特位计数 题目要求&#xff1a; 解题思路&#xff1a; 1、暴力穷举 代码&#xff1a; 2、N&&#xff08;N - 1&#xff09;公式求解 代码&#xff1a; 3、奇偶数性质解法&#xff1a; 代码&#xff1a; 20有效的括号 题目要求&#xff1a; 解题思路 …

react-router-dom 版本6.18.0中NavLink的api和属性介绍

React Router 是一个基于 React 的路由库&#xff0c;它可以帮助我们在 React 应用中实现页面的切换和路由的管理。而 NavLink 则是 React Router 中的一个组件&#xff0c;它可以帮助我们实现导航栏的样式设置和路由跳转。 在 React Router 版本6.18.0 中&#xff0c;NavLink…

python时间变化与字符串替换技术及读JSON文件等实践笔记

1. 需求描述 根据预测出结果发出指令的秒级时间&#xff0c;使用时间戳&#xff0c;也就是设定时间&#xff08;字符串&#xff09;转为数字时间戳。时间计算转换过程中&#xff0c;出现单个整数&#xff08;例如8点&#xff09;&#xff0c;按字符串格式补齐两位“08”。字符…

多媒体ffmpeg学习教程

多媒体ffmpeg 目前比较流行的音视频文件为:MP4 flv m3u8 ffmpeg ffmpeg ffplay ffprobe ffserverffmpeg -i INPUT -vf "split [main][tmp]; [tmp] cropiw:ih/2:0:0, vflip [flip];[main][flip] overlay0:H/2" OUTPUTffmpeg -i 2022.mp4 -vcodec mpeg4 -b:…

酷柚易汛ERP - 通用设置操作指南

1、系统设置 对系统进行初步设置&#xff0c;如系统LOGO、站点名称、备案号、版权信息、尾部信息及系统相关的一些基础设置 2、应用/小程序配置 对系统移动端进行相关配置 3、短信配置 对系统短信进行配置&#xff0c;此配置用于移动端一些通知类信息发送【目前仅支持阿里云…

PostgreSQL按月计算每天值的累加

要按月计算每天值的累加&#xff0c;您可以使用PostgreSQL中的日期函数和窗口函数。下面是一个示例查询&#xff0c;假设您有一个名为"table_name"的表&#xff0c;其中包含一个日期列"date_column"和一个数值列"value_column"&#xff1a; SELE…

【Android】带下划线的TextView

序言 我们有时候需要一个类似这样的显示&#xff0c;上面是文字&#xff0c;下面是一条线 这样的显示效果是TextView实现不了的&#xff0c;需要我们自己进行修改一下。 实现 创建一个UnderlineTextView&#xff0c;继承系统的TextView class UnderlineTextView(mContext…

spider 网页爬虫中的 AWS 实例数据获取问题及解决方案

前言 AAWS实例数据对于自动化任务、监控、日志记录和资源管理非常重要。开发人员和运维人员可以通过AWS提供的API和控制台访问和管理这些数据&#xff0c;以便更好地管理和维护他们在AWS云上运行的实例。然而&#xff0c;在使用 spider 框架进行网页爬取时&#xff0c;我们常常…

【Kingbase FlySync】界面化管控平台:2.配置数据库同步之KES>KES

【Kingbase FlySync】界面化管控平台:3.配置数据库同步之KES->KES 部署KES数据库到KES数据库同步服务1.登录KFS管理平台2.开始配置数据节点信息(1)配置node1数据节点(2)配置node2数据节点 3.KFS拓扑图配置4.开始部署5.启动同步程序并查验是否运行正常 测试同步1.从node1数据…

nginx学习(2)

Nginx 反向代理案例2 1. 实现效果 实现效果&#xff1a;使用 nginx 反向代理&#xff0c;根据访问的路径跳转到不同端口的服务中 nginx 监听端口为 8001&#xff0c; 访问 http://127.0.0.1:8001/edu/ 直接跳转到 127.0.0.1:8081 访问 http://127.0.0.1:8001/vod/ 直接跳转到 …

TCP与UDP协议

TCP与UDP协议 1、TCP协议&#xff1a; 1、TCP特性&#xff1a; TCP 提供一种面向连接的、可靠的字节流服务。在一个 TCP 连接中&#xff0c;仅有两方进行彼此通信。广播和多播不能用于 TCP。TCP 使用校验和&#xff0c;确认和重传机制来保证可靠传输。TCP 给数据分节进行排序…