Azure 机器学习:使用 Azure 机器学习 CLI、SDK 和 REST API 训练模型

news2024/11/27 12:55:18

目录

    • 环境准备
      • 克隆示例存储库
    • 示例案例
    • 在云中训练
      • 1.连接到工作区
        • Python
        • Azure CLI
        • REST API
      • 2. 创建用于训练的计算资源
      • 4. 提交训练作业
        • Python
        • Azure CLI
        • REST API
    • 注册已训练的模型
        • Python
        • Azure CLI
        • REST API

Azure 机器学习提供了多种提交 ML 训练作业的方法。 在本文中,你将了解如何使用 Azure 机器学习 CLI、SDK 和 REST API 训练模型

关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。

file

环境准备

  • Azure 订阅。 如果没有 Azure 订阅,请在开始操作前先创建一个免费帐户。 试用免费版或付费版 Azure 机器学习。
  • Azure 机器学习工作区。 如果没有,可以使用创建资源以开始使用一文中的步骤。

若要使用 SDK 信息,请安装适用于 Python 的 Azure 机器学习 SDK v2。

若要使用 CLI 信息,请安装适用于机器学习的 Azure CLI 和扩展。

若要使用 REST API 信息,需要以下项:

  • 工作区中的服务主体。 管理 REST 请求使用服务主体身份验证。

  • 服务主体身份验证令牌。 请按照检索服务主体身份验证令牌中的步骤检索此令牌。

  • curl 实用工具。 在适用于 Linux 的 Windows 子系统或任何 UNIX 分发版中均已提供了 [curl]程序。

克隆示例存储库

本文中的代码片段基于 Azure 机器学习示例 GitHub 存储库中的示例。 若要将存储库克隆到开发环境,请使用以下命令:

git clone --depth 1 https://github.com/Azure/azureml-examples

示例案例

本文中的示例使用鸢尾花数据集来训练 MLFlow 模型。

在云中训练

在云中训练时,必须连接到 Azure 机器学习工作区并选择将用于运行训练作业的计算资源。

1.连接到工作区

使用Python时,若要连接到工作区,需要提供标识符参数 - 订阅、资源组和工作区名称。 你将在 azure.ai.ml 命名空间的 MLClient 中使用这些详细信息来获取所需 Azure 机器学习工作区的句柄。 若要进行身份验证,请使用[默认 Azure 身份验证]。 请查看此示例,了解有关如何配置凭据和连接到工作区的更多详细信息。

Python
# Python代码
#import required libraries
from azure.ai.ml import MLClient
from azure.identity import DefaultAzureCredential

#Enter details of your Azure Machine Learning workspace
subscription_id = '<SUBSCRIPTION_ID>'
resource_group = '<RESOURCE_GROUP>'
workspace = '<AZUREML_WORKSPACE_NAME>'

#connect to the workspace
ml_client = MLClient(DefaultAzureCredential(), subscription_id, resource_group, workspace)
Azure CLI

使用 Azure CLI 时,需要提供标识符参数 - 订阅、资源组和工作区名称。 尽管可以为每个命令指定这些参数,但你也可以设置将用于所有命令的默认值。 使用以下命令设置默认值。 将 <subscription ID><Azure Machine Learning workspace name><resource group> 替换为配置的值:

# Azure CLI
az account set --subscription <subscription ID>
az configure --defaults workspace=<Azure Machine Learning workspace name> group=<resource group>
REST API

本文中的 REST API 示例使用 $SUBSCRIPTION_ID$RESOURCE_GROUP$LOCATION$WORKSPACE 占位符。 将占位符替换为自己的值,如下所示:

  • $SUBSCRIPTION_ID:Azure 订阅 ID。
  • $RESOURCE_GROUP:包含你的工作区的 Azure 资源组。
  • $LOCATION:工作区所在的 Azure 区域。
  • $WORKSPACE:Azure 机器学习工作区的名称。
  • $COMPUTE_NAME:Azure 机器学习计算群集的名称。

管理 REST 请求一个服务主体身份验证令牌。 可使用以下命令检索令牌。 令牌存储在 $TOKEN 环境变量中:

TOKEN=$(az account get-access-token --query accessToken -o tsv)

服务提供商使用 api-version 参数来确保兼容性。 api-version 参数因服务而异。 将 API 版本设置为变量以适应将来的版本:

API_VERSION="2022-05-01"

使用 REST API 进行训练时,必须将数据和训练脚本上传到工作区可以访问的存储帐户。 以下示例获取你的工作区的存储信息,并将其保存到变量中,以便稍后使用:

# Get values for storage account
response=$(curl --location --request GET "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/datastores?api-version=$API_VERSION&isDefault=true" \
--header "Authorization: Bearer $TOKEN")
AZUREML_DEFAULT_DATASTORE=$(echo $response | jq -r '.value[0].name')
AZUREML_DEFAULT_CONTAINER=$(echo $response | jq -r '.value[0].properties.containerName')
export AZURE_STORAGE_ACCOUNT=$(echo $response | jq -r '.value[0].properties.accountName')

2. 创建用于训练的计算资源

Azure 机器学习计算群集是一种完全托管的计算资源,可用于运行训练作业。 在以下示例中,创建了名为 cpu-compute 的计算群集。

# Python
from azure.ai.ml.entities import AmlCompute

# specify aml compute name.
cpu_compute_target = "cpu-cluster"

try:
    ml_client.compute.get(cpu_compute_target)
except Exception:
    print("Creating a new cpu compute target...")
    compute = AmlCompute(
        name=cpu_compute_target, size="STANDARD_D2_V2", min_instances=0, max_instances=4
    )
    ml_client.compute.begin_create_or_update(compute).result()
# Azure CLI
az ml compute create -n cpu-cluster --type amlcompute --min-instances 0 --max-instances 4
# REST API
curl -X PUT \
  "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/computes/$COMPUTE_NAME?api-version=$API_VERSION" \
  -H "Authorization:Bearer $TOKEN" \
  -H "Content-Type: application/json" \
  -d '{
    "location": "'$LOCATION'",
    "properties": {
        "computeType": "AmlCompute",
        "properties": {
            "vmSize": "Standard_D2_V2",
            "vmPriority": "Dedicated",
            "scaleSettings": {
                "maxNodeCount": 4,
                "minNodeCount": 0,
                "nodeIdleTimeBeforeScaleDown": "PT30M"
            }
        }
    }
}'

4. 提交训练作业

Python

若要运行此脚本,你将使用 ./sdk/python/jobs/single-step/lightgbm/iris/src/ 下用于执行 main.py Python 脚本的 command。 该命令通过将其作为 job 提交到 Azure 机器学习来运行。
若要使用无服务器计算,请删除此代码中的 compute="cpu-cluster"

# Python
from azure.ai.ml import command, Input

# define the command
command_job = command(
    code="./src",
    command="python main.py --iris-csv ${{inputs.iris_csv}} --learning-rate ${{inputs.learning_rate}} --boosting ${{inputs.boosting}}",
    environment="AzureML-lightgbm-3.2-ubuntu18.04-py37-cpu@latest",
    inputs={
        "iris_csv": Input(
            type="uri_file",
            path="https://azuremlexamples.blob.core.windows.net/datasets/iris.csv",
        ),
        "learning_rate": 0.9,
        "boosting": "gbdt",
    },
    compute="cpu-cluster",
)
# submit the command
returned_job = ml_client.jobs.create_or_update(command_job)
# get a URL for the status of the job
returned_job.studio_url

在上述示例中,你配置了以下内容:

  • code - 用于运行命令的代码所在的路径
  • command - 需要运行的命令
  • environment - 运行训练脚本所需的环境。 在此示例中,我们使用 Azure 机器学习所提供的名为 AzureML-lightgbm-3.2-ubuntu18.04-py37-cpu 的精选或现成环境。 通过使用 @latest 指令来使用此环境的最新版本。 你还可以通过指定基本 docker 映像并为其指定 conda yaml 来使用自定义环境。
  • inputs - 命令的输入字典,采用名称值对的形式。 键是作业上下文中的输入名称,值是输入值。 在 command 中使用 ${{inputs.<input_name>}} 表达式引用输入。 若要将文件或文件夹用作输入,可以使用 Input 类。 有关详细信息,请参阅 SDK 和 CLI v2 表达式。

提交作业时,会向 Azure 机器学习工作室中的作业状态返回一个 URL。 使用工作室 UI 查看工作进度。 你还可以使用 returned_job.status 检查作业的当前状态。

Azure CLI

此示例中使用的 az ml job create 命令需要 YAML 作业定义文件。 此示例中使用的文件内容如下:

备注

若要使用无服务器计算,请删除此代码中的 compute: azureml:cpu-cluster"

$schema: https://azuremlschemas.azureedge.net/latest/commandJob.schema.json
code: src
command: >-
  python main.py 
  --iris-csv ${{inputs.iris_csv}}
  --C ${{inputs.C}}
  --kernel ${{inputs.kernel}}
  --coef0 ${{inputs.coef0}}
inputs:
  iris_csv: 
    type: uri_file
    path: wasbs://datasets@azuremlexamples.blob.core.windows.net/iris.csv
  C: 0.8
  kernel: "rbf"
  coef0: 0.1
environment: azureml:AzureML-sklearn-0.24-ubuntu18.04-py37-cpu@latest
compute: azureml:cpu-cluster
display_name: sklearn-iris-example
experiment_name: sklearn-iris-example
description: Train a scikit-learn SVM on the Iris dataset.

上面配置了:

  • code - 用于运行命令的代码所在的路径
  • command - 需要运行的命令
  • inputs - 命令的输入字典,采用名称值对的形式。 键是作业上下文中的输入名称,值是输入值。 在 command 中使用 ${{inputs.<input_name>}} 表达式引用输入。 有关详细信息,请参阅 SDK 和 CLI v2 表达式。
  • environment - 运行训练脚本所需的环境。 在此示例中,我们使用 Azure 机器学习所提供的名为 AzureML-sklearn-0.24-ubuntu18.04-py37-cpu 的精选或现成环境。 通过使用 @latest 指令来使用此环境的最新版本。 你还可以通过指定基本 docker 映像并为其指定 conda yaml 来使用自定义环境。 若要提交作业,请使用以下命令。 训练作业的运行 ID(名称)存储在 $run_id 变量中:
run_id=$(az ml job create -f jobs/single-step/scikit-learn/iris/job.yml --query name -o tsv)

你可以使用存储的运行 ID 返回有关作业的信息。 --web 参数打开 Azure 机器学习工作室 Web UI,你可在其中深入了解作业的详细信息:

az ml job show -n $run_id --web

提交作业时,必须将训练脚本和数据上传到 Azure 机器学习工作区可访问的云存储位置。

  1. 使用以下 Azure CLI 命令上传训练脚本。 该命令指定包含训练所需文件的目录,而不是指定单个文件。 若要改用 REST 来上传数据,请参阅放置 Blob 参考:

    az storage blob upload-batch -d $AZUREML_DEFAULT_CONTAINER/testjob -s cli/jobs/single-step/scikit-learn/iris/src/ --account-name $AZURE_STORAGE_ACCOUNT
    
  2. 创建对训练数据的版本化参考。 在此示例中,数据已在云中,位于 https://azuremlexamples.blob.core.windows.net/datasets/iris.csv。 有关引用数据的详细信息,请参阅 Azure 机器学习中的数据:

    DATA_VERSION=$RANDOM
    curl --location --request PUT "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/data/iris-data/versions/$DATA_VERSION?api-version=$API_VERSION" \
    --header "Authorization: Bearer $TOKEN" \
    --header "Content-Type: application/json" \
    --data-raw "{
            \"properties\": {
            \"description\": \"Iris dataset\",
            \"dataType\": \"uri_file\",
            \"dataUri\": \"https://azuremlexamples.blob.core.windows.net/datasets/iris.csv\"
        }
    }"
    
  3. 注册对训练脚本的版本化参考,用于作业。 在此示例中,脚本位置是你在步骤 1 中将数据上传到的默认存储帐户和容器。 将返回带版本训练代码的 ID 并将其存储在 $TRAIN_CODE 变量中:

    TRAIN_CODE=$(curl --location --request PUT "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/codes/train-lightgbm/versions/1?api-version=$API_VERSION" \
    --header "Authorization: Bearer $TOKEN" \
    --header "Content-Type: application/json" \
    --data-raw "{
            \"properties\": {
            \"description\": \"Train code\",
            \"codeUri\": \"https://$AZURE_STORAGE_ACCOUNT.blob.core.windows.net/$AZUREML_DEFAULT_CONTAINER/testjob\"
        }
    }" | jq -r '.id')
    
  4. 创建群集将用于运行训练脚本的环境。 在此示例中,我们使用 Azure 机器学习所提供的名为 AzureML-lightgbm-3.2-ubuntu18.04-py37-cpu 的精选或现成环境。 以下命令检索环境版本列表,其中最新版本位于集合顶部。 jq 用于检索最新 ([0]) 版本的 ID,然后将其存储到 $ENVIRONMENT 变量中。

    ENVIRONMENT=$(curl --location --request GET "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/environments/AzureML-lightgbm-3.2-ubuntu18.04-py37-cpu/versions?api-version=$API_VERSION" --header "Authorization: Bearer $TOKEN" | jq -r .value[0].id)
    
  5. 最后,提交作业。 以下示例介绍如何提交作业,以及如何参考训练代码 ID、环境 ID、输入数据的 URL 和计算群集的 ID。 作业输出位置将存储在 $JOB_OUTPUT 变量中:

REST API
```
run_id=$(uuidgen)
curl --location --request PUT "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/jobs/$run_id?api-version=$API_VERSION" \
--header "Authorization: Bearer $TOKEN" \
--header "Content-Type: application/json" \
--data-raw "{
    \"properties\": {
        \"jobType\": \"Command\",
        \"codeId\": \"$TRAIN_CODE\",
        \"command\": \"python main.py --iris-csv \$AZURE_ML_INPUT_iris\",
        \"environmentId\": \"$ENVIRONMENT\",
        \"inputs\": {
            \"iris\": {
                \"jobInputType\": \"uri_file\",
                \"uri\": \"https://azuremlexamples.blob.core.windows.net/datasets/iris.csv\"
            }
        },
        \"experimentName\": \"lightgbm-iris\",
        \"computeId\": \"/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/computes/$COMPUTE_NAME\"
    }
}"
```

注册已训练的模型

以下示例介绍如何在 Azure 机器学习工作区中注册模型。

Python
from azure.ai.ml.entities import Model
from azure.ai.ml.constants import AssetTypes

run_model = Model(
    path="azureml://jobs/{}/outputs/artifacts/paths/model/".format(returned_job.name),
    name="run-model-example",
    description="Model created from run.",
    type=AssetTypes.MLFLOW_MODEL
)

ml_client.models.create_or_update(run_model)
Azure CLI
az ml model create -n sklearn-iris-example -v 1 -p runs:/$run_id/model --type mlflow_model
REST API
curl --location --request PUT "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/models/sklearn/versions/1?api-version=$API_VERSION" \
--header "Authorization: Bearer $TOKEN" \
--header "Content-Type: application/json" \
--data-raw "{
    \"properties\": {
        \"modelType\": \"mlflow_model\",
        \"modelUri\":\"runs:/$run_id/model\"
    }
}"

关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1218948.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【linux】查看CPU的使用率

命令1&#xff1a;top top 总体系统信息 uptime&#xff1a;系统的运行时间和平均负载。tasks&#xff1a;当前运行的进程和线程数目。CPU&#xff1a;总体 CPU 使用率和各个核心的使用情况。内存&#xff08;Memory&#xff09;&#xff1a;总体内存使用情况、可用内存和缓存…

监控直流防雷浪涌保护器综合方案

监控系统是一种广泛应用于安防、交通、工业、军事等领域的信息系统&#xff0c;它通过摄像机、传输线路、监控中心等设备&#xff0c;实现对目标区域的实时监视和控制。然而&#xff0c;监控系统也面临着雷电的威胁&#xff0c;雷电可能通过直击雷、感应雷、雷电波侵入等途径&a…

储能领域 / 通讯协议 / 技术栈 等专有名字集锦——主要收集一些储能领域的专有名词,以及相关的名词

目录 名词解释ModbusIOT设备通讯协议 CAN/ RS-485 储能术语电池管理系统BMS电池储能系统相关概念&#xff0c;总控&#xff0c;主控&#xff0c;从控 电池相关知识拆解电池的构成逆变器 电池核心参数SOC 电池剩余容量 名词解释 英文中文biz layer业务层与业务层通信的服务CRC循…

GAT里面的sofamax函数的实现:

1.sofamx 公式&#xff1a; 2. GAT里的sofamax函数的实现&#xff1a; 1. 因为指数在x轴正轴爆炸式地快速增长&#xff0c;如果zi比较大&#xff0c;exp⁡(zi)也会非常大&#xff0c;得到的数值可能会溢出。溢出又分为下溢出&#xff08;Underflow&#xff09;和上溢出&#x…

当攻防演练已成常态,企业应该相信西医还是老中医?

在面对疾病时&#xff0c;很多人常常会犹豫不决&#xff0c;不知道应该选择中医还是西医进行治疗。与疾病斗争的过程也是一场“战斗”&#xff0c;需要选择合适的“武器”和策略。有些人认为西医疗效快&#xff0c;能够迅速缓解症状&#xff1b;而另一些人则认为中医治疗更根本…

llvm源码windows编译

1.克隆llvm源码: git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git 2.创建build文件夹并生成makefile 生成前置条件: cmake ,ninja,python3要先安装 cmake -S llvm -B build -G Ninja -DCMAKE_BUILD_TYPE=Release 生成成功 3.编译 进…

如何用AB测试完善产品激励体系

更多技术交流、求职机会&#xff0c;欢迎关注字节跳动数据平台微信公众号&#xff0c;回复【1】进入官方交流群 用户激励体系&#xff0c;也称用户激励机制&#xff0c;是为了让用户持续使用产品&#xff0c;而设计的一套对应规则。在用户激励体系建立过程中&#xff0c;产品可…

linux、windows 查看java等进程占用资源情况

linux查看进程占用资源情况&#xff1a; top -o %MEM -b -n 1 | grep java | awk {print "PID: "$1" \t 虚拟内存: "$5" \t 物理内存: "$6" \t 共享内存: "$7" \t CPU使用率: "$9"% \t 内存使用率: "$10"%&…

护眼台灯选购注意事项?考公专用护眼台灯推荐

随着科技的发展和进步&#xff0c;台灯的外观也不在和以往一般笨重&#xff0c;而是变得越来越美观&#xff0c;而且也更方便了&#xff0c;功能也越来越多元化了。台灯作为现在我们日常学习、阅读、办公必备的一盏照明灯具&#xff0c;其光源的舒适度是非常重要的。那么挑选台…

新生儿早产:原因、科普和注意事项

引言&#xff1a; 新生儿早产是指婴儿在孕期不满37周就出生的情况&#xff0c;这对于新生儿的健康和发育可能产生一定的影响。了解新生儿早产的原因以及如何正确应对是非常关键的。本文将科普新生儿早产的原因&#xff0c;提供相关信息&#xff0c;并为父母和监护人提供注意事…

JAVAEE初阶 计算机如何工作

计算机的工作 一.冯诺依曼体系二.CPU基本工作流程1.逻辑门1.1电子开关1.2门电路 2.算术逻辑单元2.1 进制的理解2.2 算术单元2.3逻辑单元 3.寄存器和内存4.控制单元5.指令 一.冯诺依曼体系 二.CPU基本工作流程 1.逻辑门 1.1电子开关 1.2门电路 1.非门 2.与门 3.或门 4.异或…

SQL server从安装到入门(一)

文章目录 彻底安装怎么安装&#xff1f;Polybase要求安装orcale jre 7更新 51或更高版本&#xff1f;安装完怎么配置&#xff1f;没有SSMS&#xff1f; 熟悉一下SMSS&#xff01; 根据本人实际安装和初步使用SQL server的过程中&#xff0c;经历的一些关键性的步骤和精品文章。…

基于springboot实现电子招投标系统【项目源码】

基于springboot实现电子招投标系统演示 SpringBoot框架 SpringBoot是一个全新开源的轻量级框架。基于Spring4.0设计&#xff0c;其不仅继承了Spring框架原来有的优秀特性&#xff0c;而且还通过简化配置文件来进一步简化了Spring应用的整个搭建以及开发过程。另外在原本的Spri…

基于STC12C5A60S2系列1T 8051单片机的SPI总线器件数模芯片TLC5615实现数模转换应用

基于STC12C5A60S2系列1T 8051单片的SPI总线器件数模芯片TLC5615实现数模转换应用 STC12C5A60S2系列1T 8051单片机管脚图STC12C5A60S2系列1T 8051单片机I/O口各种不同工作模式及配置STC12C5A60S2系列1T 8051单片机I/O口各种不同工作模式介绍SPI总线器件数模芯片TLC5615介绍通过按…

Shopee买家号有什么作用?如何才能拥有大量的虾皮买家号?

对于卖家而言&#xff0c;用shopee买家号进行测评有以下几点好处&#xff1a; 1、随时随地可以给自己店铺下单、评价、点星 2、成本很低&#xff1a;都是自己准备一些资料进行注册的&#xff0c;因此成本也是比较可控的。 3、自己管理更加安全可控&#xff1a;每个账号都是独…

【AI视野·今日NLP 自然语言处理论文速览 第六十二期】Wed, 25 Oct 2023

AI视野今日CS.NLP 自然语言处理论文速览 Wed, 25 Oct 2023 (showing first 100 of 112 entries) Totally 100 papers &#x1f449;上期速览✈更多精彩请移步主页 Daily Computation and Language Papers MuSR: Testing the Limits of Chain-of-thought with Multistep Soft R…

APP广告变现痛点,开发者如何解决?

app广告变现对开发者来说&#xff0c;最大的担心是植入广告会影响自身的用户体验&#xff0c;以及该去哪里找到优质的广告主&#xff1f;如何在技术上实现广告植入的正确姿势&#xff0c;从而达成用户、流量、收益三者之间的动态平衡&#xff1f; https://www.shenshiads.com …

软文与硬广的区别是什么,小红书软文营销心得!

随着互联网愈加深入我们生活的方方面面&#xff0c;我们的生活也逐渐适应了互联网的存在&#xff0c;一些传统的阅读方式已经逐渐被我们所忽略&#xff0c;取而代之的则是一种新型产品——软文。今天&#xff0c;就来为大家分享一下软文与硬广的区别是什么&#xff0c;小红书软…

几款开源视频编辑软件的比较

软件特点OpenShot跨平台、免费开源、易于上手、功能丰富Shotcut跨平台、免费开源、支持多种格式、性能强大kdenlive跨平台、开源、功能强大、支持多种滤镜Avidemux跨平台、免费开源、小巧简洁、功能实用 OpenShot 是一款免费开源的视频编辑软件&#xff0c;支持 Windows、macO…

6块钱改变世界,网易和拼多多踏入同一条河流?

年底将至&#xff0c;各种颁奖盛典星光熠熠。如果要给今年深蹲反弹中的互联网大厂颁奖&#xff0c;2023表现最突出的可能是师出同门的兄弟网易和拼多多。 从市场表现来看&#xff0c;两家企业录得今年互联网中概股最高涨幅&#xff0c;被称为“中概股之光”&#xff1a;2023年…