基于鸟群算法优化概率神经网络PNN的分类预测 - 附代码

news2024/11/19 17:32:30

基于鸟群算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于鸟群算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于鸟群优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用鸟群算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于鸟群优化的PNN网络

鸟群算法原理请参考:https://blog.csdn.net/u011835903/article/details/108529990

利用鸟群算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

鸟群参数设置如下:

%% 鸟群参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

从结果来看,鸟群-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1210484.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Domino为外出Internet邮件设置DKIM签名

大家好,才是真的好。 如果你看了上篇《Domino中和邮件安全有关的SPF、DKIM介绍》内容,想必就对DKIM概念不陌生,当然,上篇我们讲的是邮件入站的SFP、DKIM签名检查,这篇讲述的是外出邮件的DKIM签名。 是的,…

算不上最全,但都是必备——Spring MVC这些不会不行啊

Spring MVC篇 Spring MVC执行流程 四大组件 前端控制器DispatcherServlet处理器映射器HandlerMapping处理器适配器HandlerAdaptor视图解析器ViewResolver 视图阶段(JSP) 请求先到前端控制器DispatcherServlet DispatcherServlet将根据该请求的路径去…

理解 R-CNN:目标检测的一场革命

一、介绍 对象检测是一项基本的计算机视觉任务,涉及定位和识别图像或视频中的对象。多年来,人们开发了多种方法来应对这一挑战,但基于区域的卷积神经网络(R-CNN)的发展标志着目标检测领域的重大突破。R-CNN 及其后续变…

深入探讨Linux中的文本文件查看命令

目录 前言1 cat命令2 less命令3 more命令4 head命令5 tail命令6 总结 前言 在Linux系统中,文本文件是日常工作中不可或缺的一部分,无论是配置文件、日志文件还是代码文件,都需要用到文本文件查看命令。在本文中,我们将深入研究一…

【深度学习】吴恩达课程笔记(四)——优化算法

笔记为自我总结整理的学习笔记,若有错误欢迎指出哟~ 【吴恩达课程笔记专栏】 【深度学习】吴恩达课程笔记(一)——深度学习概论、神经网络基础 【深度学习】吴恩达课程笔记(二)——浅层神经网络、深层神经网络 【深度学习】吴恩达课程笔记(三)——参数VS超参数、深度…

如何从 iCloud 恢复永久删除的照片?答案在这里!

在数字时代,丢失珍贵的照片可能会令人痛苦。然而,了解如何从 iCloud 恢复永久删除的照片可以带来一线希望。无论是意外删除还是技术故障,本指南都提供了 2023 年的最新方法来找回您的珍贵记忆。发现分步解决方案并轻松重新访问您的照片库。不…

智能供应链中的预测算法:理论与实践

💂 个人网站:【工具大全】【游戏大全】【神级源码资源网】🤟 前端学习课程:👉【28个案例趣学前端】【400个JS面试题】💅 寻找学习交流、摸鱼划水的小伙伴,请点击【摸鱼学习交流群】 引言 智能供应链已经成…

制作属于你的视觉小说,ComfyUI工作流#N3期AIGC训练营

什么是视觉小说? Visual Novel 最初这种形式被称为“有声小说” 视觉小说是一种源自日本的电子游戏类型,它以图像和文本为主要表现形式,通常包含大量的对话和故事情节。 (大量对话) 在视觉小说中,玩家可以通…

AJAX入门Day01笔记

Day01_Ajax入门 知识点自测 如下对象取值的方式哪个正确? let obj {name: 黑马 }A: obj.a B: obj()a 答案 A选项正确 哪个赋值会让浏览器解析成标签显示? let ul document.querySelector(#ul) let str <span>我是span标签</span>A: ul.innerText str B: ul…

HTML+CSS+JavaScript实战(一个简易的视频播放器)

效果如下&#xff1a; 思路很常规&#xff0c;无需注释即可看懂&#xff08;其实是懒得敲 bushi&#xff09; 没有注释也能跑&#xff0c;so直接上源码~ 感谢 夏柔站长 提供的免费API index.html <!DOCTYPE html> <html lang"en"> <head><meta …

UE4动作游戏实例RPG Action解析三:实现效果,三连击Combo,射线检测,显示血条,火球术

一、三连Combo 实现武器三连击,要求: 1.下一段Combo可以随机选择, 2.在一定的时机才能再次检测输入 3. 等当前片段播放完才播放下一片段 1.1、蒙太奇设置 通过右键-新建蒙太奇片段,在蒙太奇里创建三个片段,并且移除相关连接,这样默认只会播放第一个片段 不同片段播…

一分钟搞懂什么是this指针(未涉及静态成员和函数)

前言 我们在学习类的过程中&#xff0c;一定听说过this指针&#xff0c;但是并不知道它跟谁相似&#xff0c;又有什么用途&#xff0c;所以接下来&#xff0c;让我们一起去学习this指针吧&#xff01; 一、this指针的引入 我们先来看下面两段代码&#xff0c;它们输出的是什么&…

Rust实战教程:构建您的第一个应用

大家好&#xff01;我是lincyang。 今天&#xff0c;我们将一起动手实践&#xff0c;通过构建一个简单的Rust应用来深入理解这门语言。 我们的项目是一个命令行文本文件分析器&#xff0c;它不仅能读取和显示文件内容&#xff0c;还会提供一些基础的文本分析&#xff0c;如计算…

C# Onnx 轻量实时的M-LSD直线检测

目录 介绍 效果 效果1 效果2 效果3 效果4 模型信息 项目 代码 下载 其他 介绍 github地址&#xff1a;https://github.com/navervision/mlsd M-LSD: Towards Light-weight and Real-time Line Segment Detection Official Tensorflow implementation of "M-…

什么是Vue.js中的单向数据流(one-way data flow)?为什么它重要?

聚沙成塔每天进步一点点 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 欢迎来到前端入门之旅&#xff01;感兴趣的可以订阅本专栏哦&#xff01;这个专栏是为那些对Web开发感兴趣、刚刚踏入前端领域的朋友们量身打造的。无论你是完全的新手还是有一些基础的开发…

【QT系列教程】之二创建项目和helloworld案例

文章目录 一、QT创建项目1.1、创建项目1.2、选择创建项目属性1.3、选择路径和项目名称1.4、选择构建项目类型1.5、布局方式1.6、翻译文件&#xff0c;根据自己需求选择1.7、选择套件1.8、项目管理&#xff0c;自行配置1.9、配置完成&#xff0c;系统自动更新配置 二、QT界面介绍…

图论16-拓扑排序

文章目录 1 拓扑排序2 拓扑排序的普通实现2.1 算法实现 - 度数为0入队列2.2 拓扑排序中的环检测 3 深度优先遍历的后续遍历3.1 使用环检测类先判断是否有环3.2 调用无向图的深度优先后续遍历方法&#xff0c;进行DFS 1 拓扑排序 对一个有向无环图G进行拓扑排序&#xff0c;是将…

守护 C 盘,Python 相关库设置

前言 pip 安装依赖和 conda 创建环境有多方便&#xff0c;那 C 盘就塞得就有多满。以前我不管使用什么工具&#xff0c;最多就设置个安装位置&#xff0c;其他都是默认。直到最近 C 盘飙红了&#xff0c;我去盘符里的 AppData 里一看&#xff0c;pip 的缓存和 conda 以前创建的…

2023年咨询实务速记突破【专题总结】

需要完整资料的可以联系我获取

matlab语言的由来与发展历程

MATLAB语言的由来可以追溯到1970年代后期。当时&#xff0c;Cleve Moler教授在New Mexico大学计算机系担任系主任&#xff0c;他为了LINPACK和EISPACK两个FORTRAN程序集开发项目提供易学、易用、易改且易交互的矩阵软件而形成了最初的MATLAB。 1984年&#xff0c;MATLAB推出了…