科研学习|科研软件——有序多分类Logistic回归的SPSS教程!

news2025/1/25 4:46:05

一、问题与数据

研究者想调查人们对“本国税收过高”的赞同程度:Strongly Disagree——非常不同意,用“0”表示;Disagree——不同意,用“1”表示;Agree--同意,用“2”表示;Strongly Agree--非常同意,用“3”表示。

另外,研究者也调查了一些其它情况,包括:是否是“雇主”(biz_owner:Yes——是,用“0”表示;No——否,用“1”表示)、年龄(age)和党派(politics:Lib——党派1,用“1”表示;Con——党派2,用“2”表示;Lab——党派3,用“3”表示)。部分数据如下图:

二、对问题的分析

使用有序Logistic进行回归分析时,需要考虑4个假设。

  • 假设1:因变量唯一,且为有序多分类变量,如城市综合竞争力等级可以分为高、中、低;某病的治疗效果分为痊愈、有效、无效等。
  • 假设2:存在一个或多个自变量,可为连续、有序多分类或无序分类变量。
  • 假设3:自变量之间无多重共线性。
  • 假设4:模型满足“比例优势”假设。意思是无论因变量的分割点在什么位置,模型中各个自变量对因变量的影响不变,也就是自变量对因变量的回归系数与分割点无关。

有序多分类的Logistic回归原理是将因变量的多个分类依次分割为多个二元的Logistic回归,例如本例中因变量“本国的税收过高”的赞同程度有4个等级,分析时拆分为三个二元Logistic回归,分别为(0 vs 1+2+3) 、(0+1 vs 2+3)、(0+1+2 vs 3),均是较低级与较高级对比。

在有序多分类Logistic回归中,假设几个二元Logistic回归中,自变量的系数相等,仅常数项不等,结果也只输出一组自变量的系数。因此,有序多分类的Logistic回归模型,必须对自变量系数相等的假设(即“比例优势”假设)进行检验(又称平行线检验)。如果不满足该假设,则考虑使用无序多分类Logistic回归。

三、前期数据处理

对假设进行验证前,我们需要将分类变量设置成哑变量。

1. 为什么要设计哑变量

若直接将分类变量纳入Logistic回归方程,则软件会将分类变量按连续变量处理。例如,如果把性别按“1”——男、“2”——女进行编码,然后直接把性别纳入方程,方程会认为“女”是“男”的2倍。为了解决这个问题,需要用一系列的二分类变量“是”或“否”来表示原始的分类变量,这些新的二分类变量被称为“哑变量”。

在SPSS软件的二项Logistic回归模型中,将分类变量选入categorical,软件会自动设置一系列的哑变量。由于验证假设3(自变量之间无多重共线性)需要通过线性回归实现,而在线性回归中,就需要手动设置哑变量。因此,这里需要先手动设置哑变量。

2. 设置哑变量的思路

哑变量的数目是分类变量类别数减一。本例中,党派1、党派2和党派3的原始编码为1、2和3。设置哑变量时,需要对党派1和党派2进行重新编码。

建立新变量Lib(党派1),若调查对象选了党派1,则Lib编为“1”,代表是;若未选党派1,则Lib编为“0”,代表否。同样,建立新变量Con(党派2),将是否选党派2编为“1”或“0”。此时,若既未选党派1,又未选党派2,则两个新变量Lib和Con的编码都为“0”,代表党派3。此时,党派3在模型中是参考类别(Reference)。

3. 在SPSS中设置哑变量

(1) 首先,先创建新变量“Con”,在主菜单下选择Transform→Recode into Different Variables... ,如下图:

(2) 在Recode into Different Variables对话框中,将politics选入右侧Numeric Variable-->Output Variable下,在右侧Output Variable中填写“Con”。点击Change→Old and New Values。

(3) 出现Recode into Different Variables: Old and New Values对话框,在左侧的Old Value下的Value中填入2,在右侧的New Value下的Value中填入1,点击Add。

(4) 将其它值变为“0”:左侧点击All other values,在右侧Value中填入“0”,点击Add→Continue。

(5) 如果数据中有缺失值,点击左侧System-missing,右侧点击System-missing→Add,保持缺失值:

设置得到的结果如下图:

本例中没有缺失值,可省略这一步。

(6) 继续创建新变量“Lib”,与以上步骤相似。两个变量创建完成后,点击变量视图,可以看到在最右侧已经生成了两个新变量“Con”和“Lib”,如下图:

四、对假设的判断

假设1-2都是对研究设计的假设,需要研究者根据研究设计进行判断,所以这里主要对数据的假设3-4进行检验。

1. 检验假设3:自变量之间无多重共线性

(1) 在主菜单点击Analyze→Regression→Linear...

(2) 将tax_too_high选入Dependent,将biz_owner、age、Con、Lib选入Independent(s)。

(3) 点击Statistics,出现Linear Regression:Statistics对话框,点击Collinearity diagnostics→Continue→OK。

结果如下图:

如果容忍度(Tolerance)小于0.1或方差膨胀因子(VIF)大于10,则表示有共线性存在。

本例中,容忍度均远大于0.1,方差膨胀因子均小于10,所以不存在多重共线性。如果数据存在多重共线性,则需要用复杂的方法进行处理,其中最简单的方法是剔除引起共线性的因素之一,剔除哪一个因素可以基于理论依据。

2. 检验假设4:模型满足“比例优势”假设

“比例优势”假设可以在后面结果部分的“平行线检验”中看到。

五、SPSS操作

SPSS中,可以通过两个过程实现有序Logistic回归。分别是Analyze → Regression → Ordinal...和Analyze → Generalized Linear Models → Generalized Linear Models...。

其中,Analyze → Regression → Ordinal模块,可以检验 “比例优势”假设,但无法给出OR值和95%CI。而Analyze → Generalized Linear Models → Generalized Linear Models模块可以给出OR值和95%CI,但无法检验“比例优势”假设。

这里,我们主要介绍Analyze → Regression → Ordinal过程。

(1) 在主菜单点击Analyze→Regression→Ordinal...

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1209557.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

从0到0.01入门 Webpack| 002.精选 Webpack面试题

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云…

基础课1——智能客服的定义

1.介绍 智能客服是一种采用人工智能技术的客户服务方式,它通过语音识别、自然语言处理、语义理解等技术,实现了与客户的自动交互。智能客服可以提供客户24小时不间断的服务,帮助客户快速解决问题,提高客户满意度。智能客服的应用…

oracle-buffer cache

段,区,块。 每当新建一个表,数据库会相应创建一个段。然后给这个段分配一个区。 一个区包含多个块。 区是oracle给段分配空间的最小单位。 块是oracle i\o的最小单位。 原则上,一个块包含多行数据。 dbf文件会被划分成一个一个…

学开发语言 求职互联网行业的未来发展

我喜欢回答各种各样的问题,自然也喜欢记录下自己的一些观点和看法。希望给朋友们多一点参考,也欢迎交流探讨。 提问: 自考本科,学的开发语言,问互联网行业求职和发展! 作为一个资深码农,对这样…

分库分表之后,主键ID如何处理?

前言 当关系型数据库数据量过大时,通常会采用分库分表降低数据库查表压力。分库分表有多种,有分一个库多张分表额,有分多个库多张表的。一般分库分表使用ShardingSphere分表,建分片键等。但是分库分表之后,主键ID如何处…

快速掌握华为VRP系统的CLI管理技巧,让你轻松玩转命令行!

华为VRP基础 基本概述 VRP(通用路由平台) 系统软件:.cc 配置文件:.cfg,.zip,.dat 补丁文件:.pat paf文件:.bin 设备初始化: 设备管理方式: WEB网管:配置与设备同网段IP地址,使用浏览…

OpenGL_Learn11(光照)

目录 1. 光照 2. 环境光照 3. 漫反射光照 4. 代码实战 1. 光照 在OpenGL中主要分以下几个光照类型 环境光照(Ambient Lighting):即使在黑暗的情况下,世界上通常也仍然有一些光亮(月亮、远处的光),所以物体几乎永远不…

高德地图系列(一):vue项目如何使用高德地图、入门以及基本控件使用

目录 第一章 前言 第二章 准备工作 2.1 账号注册 2.2 高德地图开发平台文档 2.3 创建应用 第三章 使用地图 3.1 地图使用步骤 3.2 理解几个地图基础控件 3.3 基础类理解 第一章 前言 小编都是在vue项目中使用高德地图的,每一个功能都会亲测可用之后才会…

【2014年数据结构真题】

41. (13分)二叉树的带权路径长度(WPL)是二叉树中所有叶结点的带权路径长度之和。 给定一棵二叉树T,采用二叉链表存储,结点结构如下: 其中叶结点的weight域保存该结点的非负权值。 设root为指向T的根结点的指针, 请设计求T 的WPL…

linux下安装向日葵

https://sunlogin.oray.com/download/linux?typepersonal下载 在文件所在位置的空白处右键(在此处打开终端) 输入命令: sudo dpkg -i 文件名.deb (文件名为下载的deb文件名字)/usr/local/sunlogin/bin/sunlogincl…

JVM实战-JVM之类加载时机

目录 JVM实战-JVM之类加载时机1 主动引用2 被动引用 JVM实战-JVM之类加载时机 Java虚拟机把描述类的数据从Class文件加载到内存,并对数据进行校验、转换解析和初始化,最终形成可以被虚拟机直接使用的Java类型,这个过程被称作虚拟机的类加载机…

No208.精选前端面试题,享受每天的挑战和学习

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云课上架的前后端实战课程《Vue.js 和 Egg.js 开发企业级健康管理项目》、《带你从入…

arcgis--二维建筑面的三维显示设置

1、打开ArcScene软件,导入数据,如下: 2、 对建筑面进行拉伸。双击建筑物面图层,打开属性表,选择【拉伸】选项卡,参数设置如下: 显示结果如下:

第一篇 《随机点名答题系统》简介及设计流程图(类抽奖系统、在线答题系统、线上答题系统、在线点名系统、线上点名系统、在线考试系统、线上考试系统)

专栏目录 第一篇 《随机点名答题系统》简介及设计流程图(类抽奖系统、在线答题系统、线上答题系统、在线点名系统、线上点名系统、在线考试系统、线上考试系统)-CSDN博客 第二篇 《随机点名答题系统》——题库管理详解(类抽奖系统、在线答题…

万宾科技内涝积水监测仪效果,预警城市积水

当城市之中出现强降雨或者大暴雨,可能会导致雨水不断堆积到城市排水管网之中,可能还会淹没城市的排水系统时,这种现象被称为城市之中的内涝,并且在许多城市之中内涝问题日益引起人们的关注。 内涝积水监测仪的出现成为了希望的灯塔…

java轮播图接口实现

一. 内容简介 实现java后端用户管理接口,数据库使用msyql。 二. 软件环境 2.1 java 1.8 2.2 mysql Ver 8.0.13 for Win64 on x86_64 (MySQL Community Server - GPL) 2.3 IDEA ULTIMATE 2019.3 2.4d代码地址 https://gitee.com/JJW_1601897441/competitionAs…

Unity中Shader的矩阵加减法

文章目录 前言一、什么是矩阵矩阵就是一组数的阵列 二、矩阵的加法三、矩阵的负值四、矩阵的减法五、矩阵的表示 前言 Unity中Shader用到的矩阵加减法,以及矩阵的一些基础常识 一、什么是矩阵 矩阵就是一组数的阵列 1 2 3 4 5 6 二、矩阵的加法 两个矩阵相加就是…

UE4 / UE5 内存与性能优化

性能优化 资源压缩粒子优化NavMeshGenerate Overlap EventGCMarkTime光照优化Shader优化卡的时间长LOD官方CPU、GPU Insights、stat cpu、 ue4 memory report、inter GPA 、RenderDOC、减少模型面数等 资源压缩 在图片资源上右键选择Size Map可以看到资源所占大小,…

预览PDF并显示当前页数

这里写目录标题 步骤实例实例效果图 步骤 1.安装依赖 npm install --save vue-pdf2.在需要的页面&#xff0c;引入插件 import pdf from vue-pdf3.使用 单页pdf可以直接使用 <pdf :src"获取到的pdf地址"></pdf>多页pdf通过循环实现 html标签部分 &l…

Docker - 企业项目

Docker - 企业项目 因为环境原因&#xff0c;本章本人没有实际操作&#xff0c;以理论为主 容器单独没有什么意义&#xff0c;有意义的是容器的编排 Docker 4台&#xff1a;1核2G的ECS K8s 9台&#xff1a;2核4G的ECS Docker Compose Docker Swarm # manager节点初始化sw…