竞赛 题目:基于python的验证码识别 - 机器视觉 验证码识别

news2025/1/12 2:52:16

文章目录

  • 0 前言
  • 1 项目简介
  • 2 验证码识别步骤
    • 2.1 灰度处理&二值化
    • 2.2 去除边框
    • 2.3 图像降噪
    • 2.4 字符切割
    • 2.5 识别
  • 3 基于tensorflow的验证码识别
    • 3.1 数据集
    • 3.2 基于tf的神经网络训练代码
  • 4 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

基于python的验证码识别

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 项目简介

在python爬虫爬取某些网站的验证码的时候可能会遇到验证码识别的问题,现在的验证码大多分为四类:

  • 1、计算验证码

  • 2、滑块验证码

  • 3、识图验证码

  • 4、语音验证码

学长这主要写的就是识图验证码,识别的是简单的验证码,要想让识别率更高,识别的更加准确就需要花很多的精力去训练自己的字体库。

2 验证码识别步骤

1、灰度处理

2、二值化

3、去除边框(如果有的话)

4、降噪

5、切割字符或者倾斜度矫正

6、训练字体库
7、识别

这6个步骤中前三个步骤是基本的,4或者5可根据实际情况选择是否需要,并不一定切割验证码,识别率就会上升很多有时候还会下降

这篇博客不涉及训练字体库的内容,请自行搜索。同样也不讲解基础的语法。

用到的几个主要的python库: Pillow(python图像处理库)、OpenCV(高级图像处理库)、pytesseract(识别库)

2.1 灰度处理&二值化

灰度处理,就是把彩色的验证码图片转为灰色的图片。

二值化,是将图片处理为只有黑白两色的图片,利于后面的图像处理和识别

在OpenCV中有现成的方法可以进行灰度处理和二值化,处理后的效果:

在这里插入图片描述

# 自适应阀值二值化
def _get_dynamic_binary_image(filedir, img_name):
  filename =   './out_img/' + img_name.split('.')[0] + '-binary.jpg'
  img_name = filedir + '/' + img_name
  print('.....' + img_name)
  im = cv2.imread(img_name)
  im = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY) #灰值化
  # 二值化
  th1 = cv2.adaptiveThreshold(im, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 21, 1)
  cv2.imwrite(filename,th1)
  return th1

2.2 去除边框

如果验证码有边框,那我们就需要去除边框,去除边框就是遍历像素点,找到四个边框上的所有点,把他们都改为白色,我这里边框是两个像素宽

注意:在用OpenCV时,图片的矩阵点是反的,就是长和宽是颠倒的

代码:

# 去除边框
def clear_border(img,img_name):
  filename = './out_img/' + img_name.split('.')[0] + '-clearBorder.jpg'
  h, w = img.shape[:2]
  for y in range(0, w):
    for x in range(0, h):
      if y < 2 or y > w - 2:
        img[x, y] = 255
      if x < 2 or x > h -2:
        img[x, y] = 255

  cv2.imwrite(filename,img)
  return img

效果

在这里插入图片描述

2.3 图像降噪

降噪是验证码处理中比较重要的一个步骤,我这里使用了点降噪和线降噪

在这里插入图片描述
线降噪的思路就是检测这个点相邻的四个点(图中标出的绿色点),判断这四个点中是白点的个数,如果有两个以上的白色像素点,那么就认为这个点是白色的,从而去除整个干扰线,但是这种方法是有限度的,如果干扰线特别粗就没有办法去除,只能去除细的干扰线

# 干扰线降噪
def interference_line(img, img_name):
  filename =  './out_img/' + img_name.split('.')[0] + '-interferenceline.jpg'
  h, w = img.shape[:2]
  # !!!opencv矩阵点是反的
  # img[1,2] 1:图片的高度,2:图片的宽度
  for y in range(1, w - 1):
    for x in range(1, h - 1):
      count = 0
      if img[x, y - 1] > 245:
        count = count + 1
      if img[x, y + 1] > 245:
        count = count + 1
      if img[x - 1, y] > 245:
        count = count + 1
      if img[x + 1, y] > 245:
        count = count + 1
      if count > 2:
        img[x, y] = 255
  cv2.imwrite(filename,img)
  return img

点降噪的思路和线降噪的差不多,只是会针对不同的位置检测的点不一样,注释写的很清楚了

# 点降噪
def interference_point(img,img_name, x = 0, y = 0):
    """
    9邻域框,以当前点为中心的田字框,黑点个数
    :param x:
    :param y:
    :return:
    """
    filename =  './out_img/' + img_name.split('.')[0] + '-interferencePoint.jpg'
    # todo 判断图片的长宽度下限
    cur_pixel = img[x,y]# 当前像素点的值
    height,width = img.shape[:2]

    for y in range(0, width - 1):
      for x in range(0, height - 1):
        if y == 0:  # 第一行
            if x == 0:  # 左上顶点,4邻域
                # 中心点旁边3个点
                sum = int(cur_pixel) \
                      + int(img[x, y + 1]) \
                      + int(img[x + 1, y]) \
                      + int(img[x + 1, y + 1])
                if sum <= 2 * 245:
                  img[x, y] = 0
            elif x == height - 1:  # 右上顶点
                sum = int(cur_pixel) \
                      + int(img[x, y + 1]) \
                      + int(img[x - 1, y]) \
                      + int(img[x - 1, y + 1])
                if sum <= 2 * 245:
                  img[x, y] = 0
            else:  # 最上非顶点,6邻域
                sum = int(img[x - 1, y]) \
                      + int(img[x - 1, y + 1]) \
                      + int(cur_pixel) \
                      + int(img[x, y + 1]) \
                      + int(img[x + 1, y]) \
                      + int(img[x + 1, y + 1])
                if sum <= 3 * 245:
                  img[x, y] = 0
        elif y == width - 1:  # 最下面一行
            if x == 0:  # 左下顶点
                # 中心点旁边3个点
                sum = int(cur_pixel) \
                      + int(img[x + 1, y]) \
                      + int(img[x + 1, y - 1]) \
                      + int(img[x, y - 1])
                if sum <= 2 * 245:
                  img[x, y] = 0
            elif x == height - 1:  # 右下顶点
                sum = int(cur_pixel) \
                      + int(img[x, y - 1]) \
                      + int(img[x - 1, y]) \
                      + int(img[x - 1, y - 1])

                if sum <= 2 * 245:
                  img[x, y] = 0
            else:  # 最下非顶点,6邻域
                sum = int(cur_pixel) \
                      + int(img[x - 1, y]) \
                      + int(img[x + 1, y]) \
                      + int(img[x, y - 1]) \
                      + int(img[x - 1, y - 1]) \
                      + int(img[x + 1, y - 1])
                if sum <= 3 * 245:
                  img[x, y] = 0
        else:  # y不在边界
            if x == 0:  # 左边非顶点
                sum = int(img[x, y - 1]) \
                      + int(cur_pixel) \
                      + int(img[x, y + 1]) \
                      + int(img[x + 1, y - 1]) \
                      + int(img[x + 1, y]) \
                      + int(img[x + 1, y + 1])

                if sum <= 3 * 245:
                  img[x, y] = 0
            elif x == height - 1:  # 右边非顶点
                sum = int(img[x, y - 1]) \
                      + int(cur_pixel) \
                      + int(img[x, y + 1]) \
                      + int(img[x - 1, y - 1]) \
                      + int(img[x - 1, y]) \
                      + int(img[x - 1, y + 1])

                if sum <= 3 * 245:
                  img[x, y] = 0
            else:  # 具备9领域条件的
                sum = int(img[x - 1, y - 1]) \
                      + int(img[x - 1, y]) \
                      + int(img[x - 1, y + 1]) \
                      + int(img[x, y - 1]) \
                      + int(cur_pixel) \
                      + int(img[x, y + 1]) \
                      + int(img[x + 1, y - 1]) \
                      + int(img[x + 1, y]) \
                      + int(img[x + 1, y + 1])
                if sum <= 4 * 245:
                  img[x, y] = 0
    cv2.imwrite(filename,img)
    return img

效果:
在这里插入图片描述

其实到了这一步,这些字符就可以识别了,没必要进行字符切割了,现在这三种类型的验证码识别率已经达到50%以上了

2.4 字符切割

字符切割通常用于验证码中有粘连的字符,粘连的字符不好识别,所以我们需要将粘连的字符切割为单个的字符,在进行识别

字符切割的思路就是找到一个黑色的点,然后在遍历与他相邻的黑色的点,直到遍历完所有的连接起来的黑色的点,找出这些点中的最高的点、最低的点、最右边的点、最左边的点,记录下这四个点,认为这是一个字符,然后在向后遍历点,直至找到黑色的点,继续以上的步骤。最后通过每个字符的四个点进行切割

在这里插入图片描述

图中红色的点就是代码执行完后,标识出的每个字符的四个点,然后就会根据这四个点进行切割(图中画的有些误差,懂就好)

但是也可以看到,m2是粘连的,代码认为他是一个字符,所以我们需要对每个字符的宽度进行检测,如果他的宽度过宽,我们就认为他是两个粘连在一起的字符,并将它在从中间切割

确定每个字符的四个点代码:

def cfs(im,x_fd,y_fd):
  '''用队列和集合记录遍历过的像素坐标代替单纯递归以解决cfs访问过深问题
  '''

  # print('**********')

  xaxis=[]
  yaxis=[]
  visited =set()
  q = Queue()
  q.put((x_fd, y_fd))
  visited.add((x_fd, y_fd))
  offsets=[(1, 0), (0, 1), (-1, 0), (0, -1)]#四邻域

  while not q.empty():
      x,y=q.get()

      for xoffset,yoffset in offsets:
          x_neighbor,y_neighbor = x+xoffset,y+yoffset

          if (x_neighbor,y_neighbor) in (visited):
              continue  # 已经访问过了

          visited.add((x_neighbor, y_neighbor))

          try:
              if im[x_neighbor, y_neighbor] == 0:
                  xaxis.append(x_neighbor)
                  yaxis.append(y_neighbor)
                  q.put((x_neighbor,y_neighbor))

          except IndexError:
              pass
  # print(xaxis)
  if (len(xaxis) == 0 | len(yaxis) == 0):
    xmax = x_fd + 1
    xmin = x_fd
    ymax = y_fd + 1
    ymin = y_fd

  else:
    xmax = max(xaxis)
    xmin = min(xaxis)
    ymax = max(yaxis)
    ymin = min(yaxis)
    #ymin,ymax=sort(yaxis)

  return ymax,ymin,xmax,xmin

def detectFgPix(im,xmax):
  '''搜索区块起点
  '''

  h,w = im.shape[:2]
  for y_fd in range(xmax+1,w):
      for x_fd in range(h):
          if im[x_fd,y_fd] == 0:
              return x_fd,y_fd

def CFS(im):
  '''切割字符位置
  '''

  zoneL=[]#各区块长度L列表
  zoneWB=[]#各区块的X轴[起始,终点]列表
  zoneHB=[]#各区块的Y轴[起始,终点]列表

  xmax=0#上一区块结束黑点横坐标,这里是初始化
  for i in range(10):

      try:
          x_fd,y_fd = detectFgPix(im,xmax)
          # print(y_fd,x_fd)
          xmax,xmin,ymax,ymin=cfs(im,x_fd,y_fd)
          L = xmax - xmin
          H = ymax - ymin
          zoneL.append(L)
          zoneWB.append([xmin,xmax])
          zoneHB.append([ymin,ymax])

      except TypeError:
          return zoneL,zoneWB,zoneHB

  return zoneL,zoneWB,zoneHB

切割粘连字符代码:

def cutting_img(im,im_position,img,xoffset = 1,yoffset = 1):
  filename =  './out_img/' + img.split('.')[0]
  # 识别出的字符个数
  im_number = len(im_position[1])
  # 切割字符
  for i in range(im_number):
    im_start_X = im_position[1][i][0] - xoffset
    im_end_X = im_position[1][i][1] + xoffset
    im_start_Y = im_position[2][i][0] - yoffset
    im_end_Y = im_position[2][i][1] + yoffset
    cropped = im[im_start_Y:im_end_Y, im_start_X:im_end_X]
    cv2.imwrite(filename + '-cutting-' + str(i) + '.jpg',cropped)

效果:

在这里插入图片描述

2.5 识别

识别用的是typesseract库,主要识别一行字符和单个字符时的参数设置,识别中英文的参数设置,代码很简单就一行,我这里大多是filter文件的操作

# 识别验证码
      cutting_img_num = 0
      for file in os.listdir('./out_img'):
        str_img = ''
        if fnmatch(file, '%s-cutting-*.jpg' % img_name.split('.')[0]):
          cutting_img_num += 1
      for i in range(cutting_img_num):
        try:
          file = './out_img/%s-cutting-%s.jpg' % (img_name.split('.')[0], i)
          # 识别字符
          str_img = str_img + image_to_string(Image.open(file),lang = 'eng', config='-psm 10') #单个字符是10,一行文本是7
        except Exception as err:
          pass
      print('切图:%s' % cutting_img_num)
      print('识别为:%s' % str_img)

最后这种粘连字符的识别率是在30%左右,而且这种只是处理两个字符粘连,如果有两个以上的字符粘连还不能识别,但是根据字符宽度判别的话也不难,有兴趣的可以试一下

无需切割字符识别的效果:

在这里插入图片描述

需要切割字符的识别效果:

在这里插入图片描述

3 基于tensorflow的验证码识别

  • python库: tensorflow, opencv, pandas, gpu机器。

  • 训练集: 10w 图片, 200step左右开始收敛。

  • 策略: 切分图片,训练单字母识别。预测时也是同样切分。(ps:不切分训练及识别,跑了一夜,没有收敛)

  • 准确率: 在区分大小写的情况下,单字母识别率98%, 整体识别率75%+。

3.1 数据集

在这里插入图片描述

数据集预处理

package com;
import java.awt.Color;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.OutputStream;
import java.util.Random;
 
import org.patchca.color.ColorFactory;
import org.patchca.filter.predefined.CurvesRippleFilterFactory;
import org.patchca.filter.predefined.DiffuseRippleFilterFactory;
import org.patchca.filter.predefined.DoubleRippleFilterFactory;
import org.patchca.filter.predefined.MarbleRippleFilterFactory;
import org.patchca.filter.predefined.WobbleRippleFilterFactory;
import org.patchca.service.ConfigurableCaptchaService;
import org.patchca.utils.encoder.EncoderHelper;
import org.patchca.word.RandomWordFactory;
 
public class CreatePatcha {
    private static Random random = new Random();
    private static ConfigurableCaptchaService cs = new ConfigurableCaptchaService();
    static {
        // cs.setColorFactory(new SingleColorFactory(new Color(25, 60, 170)));
        cs.setColorFactory(new ColorFactory() {
            @Override
            public Color getColor(int x) {
                int[] c = new int[3];
                int i = random.nextInt(c.length);
                for (int fi = 0; fi < c.length; fi++) {
                    if (fi == i) {
                        c[fi] = random.nextInt(71);
                    } else {
                        c[fi] = random.nextInt(256);
                    }
                }
                return new Color(c[0], c[1], c[2]);
            }
        });
        RandomWordFactory wf = new RandomWordFactory();
//      wf.setCharacters("23456789abcdefghigklmnpqrstuvwxyzABCDEFGHIGKLMNPQRSTUVWXYZ");
        wf.setCharacters("0123456789abcdefghigklmnopqrstuvwxyzABCDEFGHIGKLMNOPQRSTUVWXYZ");
        wf.setMaxLength(4);
        wf.setMinLength(4);
         
        cs.setWordFactory(wf);
    }
 
    public static void main(String[] args) throws IOException {
        for (int i = 0; i < 100; i++) {
            switch (random.nextInt(5)) {
            case 0:
                cs.setFilterFactory(new CurvesRippleFilterFactory(cs
                        .getColorFactory()));
                break;
            case 1:
                cs.setFilterFactory(new MarbleRippleFilterFactory());
                break;
            case 2:
                cs.setFilterFactory(new DoubleRippleFilterFactory());
                break;
            case 3:
                cs.setFilterFactory(new WobbleRippleFilterFactory());
                break;
            case 4:
                cs.setFilterFactory(new DiffuseRippleFilterFactory());
                break;
            }
 
            OutputStream out = new FileOutputStream(new File(i + ".png"));
            String token = EncoderHelper.getChallangeAndWriteImage(cs, "png",
                    out);
            out.close();
            File f = new File(i+".png");
            f.renameTo(new File("checkdata/" + token +"_" + i+".png"));
            System.out.println(i+"验证码=" + token);
        }
    }
}

3.2 基于tf的神经网络训练代码

#coding:utf-8from gen_captcha import gen_captcha_text_and_imagefrom gen_captcha import numberfrom gen_captcha import alphabetfrom gen_captcha import ALPHABETimport numpy as npimport tensorflow as tfimport osos.environ["CUDA_VISIBLE_DEVICES"] = "0"text, image = gen_captcha_text_and_image()print("验证码图像channel:", image.shape)  # (70, 160, 3)# 图像大小IMAGE_HEIGHT = 70IMAGE_WIDTH = 70MAX_CAPTCHA = len(text)print("验证码文本最长字符数", MAX_CAPTCHA)   # 验证码最长4字符; 我全部固定为4,可以不固定. 如果验证码长度小于4,用'_'补齐# 把彩色图像转为灰度图像(色彩对识别验证码没有什么用)def convert2gray(img):    if len(img.shape) > 2:        gray = np.mean(img, -1)        # 上面的转法较快,正规转法如下        # r, g, b = img[:,:,0], img[:,:,1], img[:,:,2]        # gray = 0.2989 * r + 0.5870 * g + 0.1140 * b        return gray    else:        return img"""cnn在图像大小是2的倍数时性能最高, 如果你用的图像大小不是2的倍数,可以在图像边缘补无用像素。np.pad(image【,((2,3),(2,2)), 'constant', constant_values=(255,))  # 在图像上补2行,下补3行,左补2行,右补2行"""# 文本转向量# char_set = number + alphabet + ALPHABET + ['_']  # 如果验证码长度小于4, '_'用来补齐char_set = number + alphabet + ALPHABET # 如果验证码长度小于4, '_'用来补齐CHAR_SET_LEN = len(char_set) #26*2+10+1=63def text2vec(text):    text_len = len(text)    if text_len > MAX_CAPTCHA:        raise ValueError('验证码最长4个字符')    vector = np.zeros(MAX_CAPTCHA*CHAR_SET_LEN)    def char2pos(c):        if c =='_':            k = 62            return k        k = ord(c)-48        if k > 9:            k = ord(c) - 55            if k > 35:                k = ord(c) - 61                if k > 61:                    raise ValueError('No Map')        return k    for i, c in enumerate(text):        idx = i * CHAR_SET_LEN + char2pos(c)        vector[idx] = 1    return vector# 向量转回文本def vec2text(vec):    char_pos = vec.nonzero()[0]    text=[]    for i, c in enumerate(char_pos):        char_at_pos = i #c/63        char_idx = c % CHAR_SET_LEN        if char_idx < 10:            char_code = char_idx + ord('0')        elif char_idx <36:            char_code = char_idx - 10 + ord('A')        elif char_idx < 62:            char_code = char_idx-  36 + ord('a')        elif char_idx == 62:            char_code = ord('_')        else:            raise ValueError('error')        text.append(chr(char_code))    return "".join(text)"""#向量(大小MAX_CAPTCHA*CHAR_SET_LEN)用0,1编码 每63个编码一个字符,这样顺利有,字符也有vec = text2vec("F5Sd")text = vec2text(vec)print(text)  # F5Sdvec = text2vec("SFd5")text = vec2text(vec)print(text)  # SFd5"""# 生成一个训练batchdef get_next_batch(batch_size=128, train = True):    batch_x = np.zeros([batch_size, IMAGE_HEIGHT*IMAGE_WIDTH])    batch_y = np.zeros([batch_size, MAX_CAPTCHA*CHAR_SET_LEN])    # 有时生成图像大小不是(70, 160, 3)    def wrap_gen_captcha_text_and_image(train):        while True:            text, image = gen_captcha_text_and_image(train)            if image.shape == (70, 70, 3):                return text, image    for i in range(batch_size):        text, image = wrap_gen_captcha_text_and_image(train)        image = convert2gray(image)        batch_x[i,:] = image.flatten() / 255 # (image.flatten()-128)/128  mean为0        batch_y[i,:] = text2vec(text)    return batch_x, batch_y####################################################################X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT*IMAGE_WIDTH])Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA*CHAR_SET_LEN])keep_prob = tf.placeholder(tf.float32) # dropout# 定义CNNdef crack_captcha_cnn(w_alpha=0.01, b_alpha=0.1):    x = tf.reshape(X, shape=[-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1])    #w_c1_alpha = np.sqrt(2.0/(IMAGE_HEIGHT*IMAGE_WIDTH)) #    #w_c2_alpha = np.sqrt(2.0/(3*3*32))    #w_c3_alpha = np.sqrt(2.0/(3*3*64))    #w_d1_alpha = np.sqrt(2.0/(8*32*64))    #out_alpha = np.sqrt(2.0/1024)    # 3 conv layer    w_c1 = tf.Variable(w_alpha*tf.random_normal([3, 3, 1, 32]))    b_c1 = tf.Variable(b_alpha*tf.random_normal([32]))    conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(x, w_c1, strides=[1, 1, 1, 1], padding='SAME'), b_c1))    conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')    conv1 = tf.nn.dropout(conv1, keep_prob)    w_c2 = tf.Variable(w_alpha*tf.random_normal([3, 3, 32, 64]))    b_c2 = tf.Variable(b_alpha*tf.random_normal([64]))    conv2 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv1, w_c2, strides=[1, 1, 1, 1], padding='SAME'), b_c2))    conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')    conv2 = tf.nn.dropout(conv2, keep_prob)    w_c3 = tf.Variable(w_alpha*tf.random_normal([3, 3, 64, 64]))    b_c3 = tf.Variable(b_alpha*tf.random_normal([64]))    conv3 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv2, w_c3, strides=[1, 1, 1, 1], padding='SAME'), b_c3))    conv3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')    conv3 = tf.nn.dropout(conv3, keep_prob)    # Fully connected layer    w_d = tf.Variable(w_alpha*tf.random_normal([9*9*64, 1024]))    b_d = tf.Variable(b_alpha*tf.random_normal([1024]))    dense = tf.reshape(conv3, [-1, w_d.get_shape().as_list()[0]])    dense = tf.nn.relu(tf.add(tf.matmul(dense, w_d), b_d))    dense = tf.nn.dropout(dense, keep_prob)    w_out = tf.Variable(w_alpha*tf.random_normal([1024, MAX_CAPTCHA*CHAR_SET_LEN]))    b_out = tf.Variable(b_alpha*tf.random_normal([MAX_CAPTCHA*CHAR_SET_LEN]))    out = tf.add(tf.matmul(dense, w_out), b_out)    #out = tf.nn.softmax(out)    return out# 训练def train_crack_captcha_cnn():    output = crack_captcha_cnn()    # loss    #loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(output, Y))    with tf.device('/gpu:0'):        loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=output, labels=Y))            # 最后一层用来分类的softmax和sigmoid有什么不同?        # optimizer 为了加快训练 learning_rate应该开始大,然后慢慢衰        optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)        predict = tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN])        max_idx_p = tf.argmax(predict, 2)        max_idx_l = tf.argmax(tf.reshape(Y, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)        correct_pred = tf.equal(max_idx_p, max_idx_l)        accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))    saver = tf.train.Saver()    config = tf.ConfigProto(allow_soft_placement=True)    config.gpu_options.allow_growth = True    with tf.Session(config=config) as sess:        sess.run(tf.global_variables_initializer())        step = 0        while True:            batch_x, batch_y = get_next_batch(256)            _, loss_ = sess.run([optimizer, loss], feed_dict={X: batch_x, Y: batch_y, keep_prob: 0.75})            # 每100 step计算一次准确率            if step % 100 == 0:                batch_x_test, batch_y_test = get_next_batch(100, False)                acc = sess.run(accuracy, feed_dict={X: batch_x_test, Y: batch_y_test, keep_prob: 1.})                print('step:%d,loss:%g' % (step, loss_))                print('step:%d,acc:%g'%(step, acc))                # 如果准确率大于50%,保存模型,完成训练                if acc > 0.98:                    saver.save(sess, "crack_capcha.model", global_step=step)                    break            step += 1def crack_captcha(captcha_image):    output = crack_captcha_cnn()    saver = tf.train.Saver()    with tf.Session() as sess:        saver.restore(sess, tf.train.latest_checkpoint('.'))        predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)        text_list = sess.run(predict, feed_dict={X: [captcha_image], keep_prob: 1})        text = text_list[0].tolist()        vector = np.zeros(MAX_CAPTCHA*CHAR_SET_LEN)        i = 0        for n in text:                vector[i*CHAR_SET_LEN + n] = 1                i += 1        return vec2text(vector)if __name__ == '__main__':    #text, image = gen_captcha_text_and_image()    #image = convert2gray(image)    #image = image.flatten() / 255    #predict_text = crack_captcha(image)    #print("正确: {}  预测: {}".format(text, predict_text))    train_crack_captcha_cnn()

在这里插入图片描述

4 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1208070.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

超详细!必看!!STM32--时钟树原理

一、什么是时钟&#xff1f; 时钟是单片机的脉搏&#xff0c;是系统工作的同步节拍。单片机上至CPU&#xff0c;下至总线外设&#xff0c;它们工作时序的配合&#xff0c;都需要一个同步的时钟信号来统一指挥。时钟信号是周期性的脉冲信号。 二、什么是时钟树&#xff1f; S…

Pikachu(皮卡丘靶场)初识XSS(常见标签事件及payload总结)

目录 1、反射型xss(get) 2、反射性xss(post) 3、存储型xss 4、DOM型xss 5、DOM型xss-x XSS又叫跨站脚本攻击&#xff0c;是HTML代码注入&#xff0c;通过对网页注入浏览器可执行代码&#xff0c;从而实现攻击。 ​ 1、反射型xss(get) Which NBA player do you like? 由…

【Mycat2实战】一、Mycat简介

1. 什么是Mycat 什么是Mycat Mycat是数据库中间件&#xff0c;所谓中间件数据库中间件是连接Java应用程序和数据库中间的软件。 为什么要用Mycat 遇到问题&#xff1a; Java与数据库的紧耦合高访问量高并发对数据库的压力读写请求数据不一致 2. Mycat与其他中间件区别 目前的…

全面解读Asana项目管理软件:功能、成本与顶级国内替代方案

Asana好用吗&#xff1f;Asana作为一款办公软件的话&#xff0c;其应用范围和受众范围是极为有限。支持这款软件的人把它夸上天&#xff0c;认为其他同类型产品根本不值一提&#xff1b;不支持这款软件的人又把它“束之高阁”&#xff0c;根本不想再用它。 Asana正是近些年具有…

玩转ChatGPT:ARIMA模型定制GPT-1.0

一、写在前面 好久不更新咯&#xff01; OpenAI又推出了GPT的一系列重大更新&#xff0c;其中GPTs深得我心啊。 GPTs允许用户创建自定义的ChatGPT版本&#xff0c;以满足自己各种特定需求。其核心理念在于&#xff0c;用户可以为不同的场景和任务创建定制化的ChatGPT。这意味…

为什么数据安全很重要?哪些措施保护数据安全?

数据安全很重要的原因是因为数据是现代社会的重要财产之一。很多组织和企业依赖数据来做出商业决策&#xff0c;管理客户关系&#xff0c;进行财务规划等等。如果这些数据泄露或遭到黑客攻击&#xff0c;那么就会影响企业的经济利益&#xff0c;甚至影响到个人的隐私和安全。此…

接口测试需要验证数据库么?

&#x1f4e2;专注于分享软件测试干货内容&#xff0c;欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; 如有错误敬请指正&#xff01;&#x1f4e2;交流讨论&#xff1a;欢迎加入我们一起学习&#xff01;&#x1f4e2;资源分享&#xff1a;耗时200小时精选的「软件测试」资…

Git用pull命令后再直接push有问题

在gitlab新建一个项目&#xff0c;然后拉取到本地&#xff0c;用&#xff1a; git init git pull <远程主机名> 然后就是在本地工作区增加所有文件及文件夹。再添加、提交&#xff0c;都没问题&#xff1a; 但是&#xff0c;git push出问题&#xff1a; 说明本地仓库和…

解密图像处理中的利器——直方图与均衡化

直方图与均衡化是数字图像处理中常用的重要工具&#xff0c;它们能够帮助我们更好地理解和改善图像的亮度分布。本文将首先介绍直方图的基本概念以及其在图像处理中的意义&#xff0c;接着详细阐述直方图均衡化的原理和算法。同时&#xff0c;文章将探讨直方图均衡化在图像增强…

在 Android 上简单安全地登录——使用凭证管理器和密钥

我踏马很高兴地听说&#xff0c; Credential Manager的公开版本将于 11 月 1 日开始提供。Credential Manager 为 Android 带来了身份验证的未来&#xff0c;简化了用户登录应用程序和网站的方式&#xff0c;同时使其更加安全。 登录可能具有挑战性 - 密码经常使用&#xff0c…

【无线网络技术】——无线传输技术基础(学习笔记)

目录 &#x1f552; 1. 无线传输媒体&#x1f558; 1.1 地面微波&#x1f558; 1.2 卫星微波&#x1f558; 1.3 广播无线电波&#x1f558; 1.4 红外线&#x1f558; 1.5 光波 &#x1f552; 2. 天线&#x1f558; 2.1 辐射模式&#x1f558; 2.2 天线类型&#x1f564; 2.2.1 …

react Antd3以下实现年份选择器 YearPicker

项目antd版本低&#xff0c;没有直接可使用的年份选择器&#xff0c;参考此篇&#xff08;使用antd实现年份选择器控件 - 掘金&#xff09; 一开始在state里设置了time&#xff1a; this.state {isopen: false,time: null } 在类似onChange事件里this.setState({time: valu…

Linux系统软件安装方式

Linux系统软件安装方式 1. 绿色安装2. yum安装3. rpm安装3.1 rpm常用命令 4. 源码安装4.1 安装依赖包4.2 执行configure脚本4.3 编译、安装4.4 安装4.5 操作nginx4.6 创建服务器 1. 绿色安装 Compressed Archive压缩文档包&#xff0c;如Java软件的压缩文档包&#xff0c;只需…

图形学中的噪声

1 value noise 四个点取随机数然后做插值。 float random (in vec2 st) {return fract(sin(dot(st.xy,vec2(12.9898,78.233)))* 43758.5453123); }float noise (in vec2 st) {vec2 i floor(st);vec2 f fract(st);float a random(i);float b random(i vec2(1.0, 0.0));fl…

centralwidget 不能布局

必须要在QT ui中添加一个任意的子控件&#xff08;比如添加了一个pushButton&#xff09;&#xff0c;然后在centralwidget 才能右键设置布局&#xff0c;成功去掉centralwidget 右下角的红色的标记。

如何制作出高级感满满的的照片书

随着数码相机的普及&#xff0c;越来越多的人喜欢将生活中的点滴美好记录下来&#xff0c;其中照片书就是一种非常受欢迎的方式。但是&#xff0c;如何制作出高级感满满的“照片书”呢&#xff1f;今天&#xff0c;我们就来分享几个小技巧&#xff0c;帮助你轻松打造出令人惊艳…

RT-DETR算法优化改进:Backbone改进|RIFormer:无需TokenMixer也能达成SOTA性能的极简ViT架构 | CVPR2023

💡💡💡本文独家改进:RIFormer助力RT-DETR ,替换backbone, RIFormer-M36的吞吐量可达1185,同时精度高达82.6%;而PoolFormer-M36的吞吐量为109,精度为82.1%。 推荐指数:五星 RT-DETR魔术师专栏介绍: https://blog.csdn.net/m0_63774211/category_12497375.html …

2023企业如何挑选智能工单系统?选亿发工单管理解决方案提供商,移动派单

在企业运作中&#xff0c;工单管理是一项至关重要的工作流程&#xff0c;可以使用标准化、系统化的方式对问题和请求进行全面管理、维护和追踪。 然而&#xff0c;传统的工单处理方式常常受到办公地点和时间的限制&#xff0c;存在工单录入繁琐易错、工作流程曲折耗时、跨部门协…

车间部署MES管理系统后有哪些变化

随着智能制造技术的飞速发展&#xff0c;工厂车间正经历着一场由数字化管理和智能化协调优化驱动的变革。这场变革的核心便是MES管理系统。实施MES管理系统在提升生产效率、降低成本、提高产品质量和优化资源投入方面发挥着重要作用&#xff0c;助力工厂实现整体运作的协作管理…

搭建项目环境,集成ts和jest

前言 开新坑。 斥巨资购入大崔哥的 mini-vue 课程&#xff0c;为了改变自己东一榔头西一棒槌的学习状态&#xff0c;也是因为深刻思考了自己身无长物浑浑噩噩这么多年只会敲代码&#xff0c;别无出路&#xff0c;也只能提升自己继续走技术这条路&#xff0c;那提高技术绕不过…