[pytorch]设备选择以及卷积神经网络的应用

news2024/11/16 13:41:30

0.写在前面:

首先这篇文章还没写完,因为今天要尝试对我之前的一个框架做一个简单的更新迭代,所以目前先更新这么多.

1.关于设备的选择

首先,目前的大多数电脑都是自带一些GPU(图形计算单元,在这里被称之为cuda), 需要安装相关的驱动才能正常使用这些设备和调用他们的具体情况.

nvidia-smi

 但是平时对于我们个人来说,我们的电脑基本无法承担上百万的数据调用,所以一般情况下,服务器是可以提供给我们这些东西.

如图所示是服务器上的GPU情况,可以看到服务器的开发者实现了一些其他的探测功能.

(1)单独设备的选取

首先注意一个情况,对于单一设备来说,我们称呼CPU为'cpu',称呼GPU为'gpu'

而在代码中,设备时被抽象为一个对象,我们可以通过torch包下的device来指定某个设备:

torch.device('cpu')
torch.device('cuda') # 默认找到地0个GPU
torch.device('cuda:1') # 可以指定第一个GPU

# 以上三个函数会返回对应的一个设备连接对象

 以上三个函数用来创建设备链接对象没通过这些设备可以获得具体的对象

当然在拿不准的时候,可以直接查询GPU的数目

torch.cuda.device_count()

 

2.关于卷积神经网络的简单应用情况

如何构建神经网络,其实在上一篇博客中已经说到了,这里就简单介绍几个神经网络层构建函数

(1)卷积层

卷积层实现的效果其实就是一个简单的乘法加和,原理如图所示

import torch.nn as nn

nn.Con2d( input_channels, kernet_num ,kernel_size=?, padding=0, stride=1)

 注意一下参数中的第二个参数是我个人的理解,其实按照正常的普遍理解,这个应该叫"输出通道数目".

(2)平均池化层

(注意,大池化层的特点之一,都是不会改变频道的数目,也就是只会修改输入的尺寸,而不会修改输入的通道数目!!!!这个的pool东西,默认只有一层通道,也就是一个2d的核)

另外两个池化层需要输入的参数只有核的大小,以及步长

import torch.nn as nn

nn.AvgPool2D(kernel_size=? stride=1)

(3)最大池化层

import torch.nn as nn

nn.MaxPool2D(kernel_size=? stride=1)

3.如何讲模型和设备移动到指定设备上

首先我们在大多数情况下创建的张量和模型,都是默认在cpu上面的\

arr.device    # cpu
net.device    # cuda/gpu

 而在进行模型计算的时候,需要首先将模型和张量移动到统一设备上,这样计算很省时间

虽然但是,torch对于跨设备的数据和模型,提供了一些奇奇怪怪的手段来完成一个自动传递,但是真到了在训练的时候,临时传输不可避免地会造成大量的开销

使用to函数建立新链接即可

cuda1=torch.device('cuda:1')
X = torch.tensor([0,1,2,3])
Y = X.to(cuda1)

X.device # cpu
Y.device # cuda1

而对于模型来说也是一样的的移动方式,使用to函数来实现

# 顺便这里补充一个with语句
with语句用来创建一个上下文, 比如打开文件(这里要加上as)
或者说给模型设置为训练模式

当with语句中的函数块执行结束以后,就可以讲with对应的操作做一个取消
with net.train():
     ..........
当内部函数块执行结束以后,模型就会撤掉"转变为训练模式"这个操作

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1205710.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

在Vue.js中,什么是Vuex?它的作用是什么?

聚沙成塔每天进步一点点 ⭐ 专栏简介 前端入门之旅:探索Web开发的奇妙世界 欢迎来到前端入门之旅!感兴趣的可以订阅本专栏哦!这个专栏是为那些对Web开发感兴趣、刚刚踏入前端领域的朋友们量身打造的。无论你是完全的新手还是有一些基础的开发…

Model Inspector—软件模型静态规范检查工具

产品概述 Model Inspector(MI)原厂商是韩国Suresoft,是KOLAS国际公认测评机构,旨在提升安全关键领域软件可信度。MI用于开发过程中模型的静态检查,包括规范检查、复杂度度量,提供MAAB、HIS、CG、MISRA_AC_…

C++模拟实现——AVL树

AVL树 1.介绍 AVL树是对搜索二叉树的改进,通过特定的方法使得每个节点的左右子树高度差绝对值不超过1,使得避免出现歪脖子的情况,最核心的实现在于插入值部分是如何去实现平衡调整的,由于前面详细实现和解析过搜索二叉树&#x…

算法笔记-贪心1

算法笔记-贪心 什么是贪心算法分配饼干例题理解二分割字符串最优装箱整数配对最大组合整数分配区间问题买股票的最佳时机区间选点 问题什么是贪心算法 分配饼干例题 //贪心算法 //保证局部最优,从而使最后得到的结果是全局最优的 #include<iostream> #include<a…

No199.精选前端面试题,享受每天的挑战和学习

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云课上架的前后端实战课程《Vue.js 和 Egg.js 开发企业级健康管理项目》、《带你从入…

Android framework添加自定义的Product项目,lunch目标项目

文章目录 Android framework添加自定义的Product项目1.什么是Product&#xff1f;2.定义自己的Product玩一玩 Android framework添加自定义的Product项目 1.什么是Product&#xff1f; 源码目录下输入lunch命令之后&#xff0c;简单理解下面这些列表就是product。用于把系统编…

Transformers 中原生支持的量化方案概述

本文旨在对 transformers 支持的各种量化方案及其优缺点作一个清晰的概述&#xff0c;以助于读者进行方案选择。 目前&#xff0c;量化模型有两个主要的用途: 在较小的设备上进行大模型推理对量化模型进行适配器微调 到目前为止&#xff0c;transformers 已经集成并 原生 支持了…

阿里云添加端口

目录 阿里云添加端口的方法与步骤详解 一、登录阿里云控制台 二、创建安全组 三、添加入站规则 四、添加出站规则 五、完成添加端口操作 也可 1&#xff1a;搜索轻量级服务器 2&#xff1a;点击服务器 3&#xff1a;点击添加规则 4&#xff1a;保存即可 总结 阿里云…

Redis 常用的类型和 API

前言 在当今的软件开发中&#xff0c;数据存储与操作是至关重要的一部分。为了满足日益增长的数据需求和对性能的追求&#xff0c;出现了许多不同类型的数据库。其中&#xff0c;Redis 作为一种基于内存且高性能的键值存储数据库&#xff0c;因其快速的读取速度、丰富的数据结…

Flink SQL --命令行的使用(02)

1、窗口函数&#xff1a; 1、创建表&#xff1a; -- 创建kafka 表 CREATE TABLE bid (bidtime TIMESTAMP(3),price DECIMAL(10, 2) ,item STRING,WATERMARK FOR bidtime AS bidtime ) WITH (connector kafka,topic bid, -- 数据的topicproperties.bootstrap.servers m…

Javaweb之javascript事件的详细解析

1.6 JavaScript事件 1.6.1 事件介绍 如下图所示的百度注册页面&#xff0c;当我们用户输入完内容&#xff0c;百度可以自动的提示我们用户名已经存在还是可以使用。那么百度是怎么知道我们用户名输入完了呢&#xff1f;这就需要用到JavaScript中的事件了。 什么是事件呢&…

拆位线段树 E. XOR on Segment

Problem - E - Codeforces 区间求和&#xff0c;区间异或的操作跟线段树的区间求和、区间相见相似&#xff0c;考虑用线段树。 发现数组初始值最多是1e6&#xff0c;有不到25位&#xff0c;可以知道异或最大值是这些位数全是1的情况。 发现可以对每一位进行运算就和。 我们开…

图论14-最短路径-Dijkstra算法+Bellman-Ford算法+Floyed算法

文章目录 0 代码仓库1 Dijkstra算法2 Dijkstra算法的实现2.1 设置距离数组2.2 找到当前路径的最小值 curdis&#xff0c;及对应的该顶点cur2.3 更新权重2.4 其他接口2.4.1 判断某个顶点的连通性2.4.2 求源点s到某个顶点的最短路径 3使用优先队列优化-Dijkstra算法3.1 设计内部类…

通过Python设置及读取PDF属性,轻松管理PDF文档

PDF文档属性是嵌入在PDF文档中的一些与文档有关的信息&#xff0c;如作者、制作软件、标题、主题等。PDF属性分为默认属性和自定义属性两种&#xff0c;其中默认属性是一些固定的文档信息&#xff0c;部分信息自动生成&#xff08;如文件大小、页数、页面大小等信息&#xff09…

Linux上C++通过LDAP协议使用kerberos认证AES加密连接到AD服务器

一.前言 记录自己在实现这个流程遇到的各种问题&#xff0c;因为我也是看了许多优质的文章以及组内大佬的帮助下才弄成的&#xff0c;这里推荐一个大佬的文章&#xff0c;写的非常优秀&#xff0c;比我这篇文章写得好得很多&#xff0c;最后我也是看这个大佬的代码最终才实现的…

数据运营基础:用户场景营销

一、概述 场景营销模型是顶层模型&#xff0c;是站在用户经营和用户场景角度来制定经营策略的模型。本质上&#xff0c;场景营销模型是在用户使用产品的每个细分场景中通过分析用户需求整合功能、实体和体验等为用户提供服务的模型。 二、场景的起源和特点 数据运营体系在发展…

【C++】日期类实现,与日期计算相关OJ题

文章目录 日期类的设计日期计算相关OJ题HJ73 计算日期到天数转换KY111 日期差值KY222 打印日期KY258 日期累加 在软件开发中&#xff0c;处理日期是一项常见的任务。为了方便地操作日期&#xff0c;我们可以使用C编程语言来创建一个简单的日期类。在本文中&#xff0c;我们将介…

[工业自动化-18]:西门子S7-15xxx编程 - 软件编程 - PLC用于工业领域的嵌入式系统:硬件原理图、指令系统、系统软件架构、开发架构等

目录 前言&#xff1a; 一、PLC的硬件电路原理 1.1 硬件框图 1.2 硬件模块详解 &#xff08;1&#xff09;CPU &#xff08;2&#xff09;存储器 &#xff08;3&#xff09;输入/输出&#xff08;I/O&#xff09;模块 &#xff08;4&#xff09;编程器 &#xff08;5&a…

(只需三步)Vmvare tools安装教程,实现与windows互通复制粘贴与文件拖拽

首先确保Ubuntu是联网的&#xff0c;如果连不上网可以参考我的这个联网教程&#xff0c;也很简单 &#xff08;只需三步&#xff09;虚拟机上vm的ubuntu不能联上网怎么办-CSDN博客 第一步&#xff1a;卸载之前的tools,确保没有残留 sudo apt-get autoremove open-vm-tools 第…

第2关:计算二叉树的深度和节点个数

任务描述相关知识 二叉树深度概念二叉树节点二叉树叶子节点概念编程要求测试说明 任务描述 本关任务&#xff1a;给定一棵二叉树&#xff0c;计算该二叉树的深度、总节点个数和叶子节点个数。 相关知识 为了完成本关任务&#xff0c;你需要掌握&#xff1a;1.二叉树深度概念…