性能爆炸!Python多进程模式实现多核CPU并行计算

news2024/11/20 1:35:25

文章目录

  • 前言
  • 一、.Python中的多进程模式
  • 二、提高程序执行效率的方法
    • 1.多进程并发执行任务
    • 2.进程池
  • 3.消息队列
    • 4.共享内存
    • 5.异步IO
  • 总结
      • 关于Python技术储备
        • 一、Python所有方向的学习路线
        • 二、Python基础学习视频
        • 三、精品Python学习书籍
        • 四、Python工具包+项目源码合集
        • ①Python工具包
        • ②Python实战案例
        • ③Python小游戏源码
        • 五、面试资料
        • 六、Python兼职渠道


前言

随着计算机硬件的不断发展,多核CPU已经成为普及的硬件设备,利用多核CPU的优势可以有效的提高程序的执行效率。

而多进程模式可以实现多核CPU的并行计算。Python作为一门高级编程语言,提供了多进程、多线程等多种方式来实现并行计算。

在本文中,我们将重点介绍在Python中如何利用多进程模式提高程序的执行效率。
在这里插入图片描述


一、.Python中的多进程模式

在Python中,可以使用multiprocessing模块来实现多进程。multiprocessing是Python标准库中的一个模块,用于管理多进程的创建和通信。

在multiprocessing中,可以使用Process类来创建进程,Process类的构造函数可以接受一个函数作为参数。

该函数将在子进程中执行。下面是一个简单的示例:

import multiprocessing
def worker():
    print("Worker process started")
if __name__ == '__main__':
    p = multiprocessing.Process(target=worker)
    p.start()
    p.join()

在上面的示例中,我们首先定义了一个worker函数,然后使用Process类创建了一个进程,并将worker函数作为参数传递给Process类的构造函数。

最后,我们调用Process类的start方法启动进程,并调用Process类的join方法等待进程结束。

二、提高程序执行效率的方法

在Python中使用多进程模式提高程序执行效率,可以通过以下几种方式来实现:

1.多进程并发执行任务

在多进程模式下,可以将任务分配给多个进程并行执行,从而利用多核CPU的优势。

在Python中,可以使用multiprocessing模块来实现多进程并发执行任务。

下面是一个简单的示例:

import multiprocessing
def worker(name):
    print("Worker %s started" % name)
if __name__ == '__main__':
    for i in range(5):
        p = multiprocessing.Process(target=worker, args=(i,))
        p.start()

在上面的示例中,我们定义了一个worker函数,该函数接受一个参数name,并在函数体中打印出Worker name started的信息。

然后我们使用for循环创建了5个进程,并将worker函数和对应的参数传递给Process类的构造函数。

最后,我们调用Process类的start方法启动进程。

2.进程池

对于大量重复的任务,可以使用进程池来维护一定数量的进程,每个进程执行一个任务后返回结果,然后再由进程池分配下一个任务。

这样可以避免频繁地创建和销毁进程,提高效率。在Python中,可以使用multiprocessing模块的Pool类来实现进程池。

下面是一个简单的示例:

import multiprocessing
def worker(name):
    print("Worker %s started" % name)
if __name__ == '__main__':
    with multiprocessing.Pool(processes=4) as pool:
        pool.map(worker, range(10))

在上面的示例中,我们定义了一个worker函数,该函数接受一个参数name,并在函数体中打印出Worker name started的信息。

然后我们使用with语句创建了一个进程池,并指定进程池中的进程数量为4。

最后,我们使用Pool类的map方法将worker函数和对应的参数传递给进程池,进程池会自动分配任务给不同的进程执行。

3.消息队列

在多进程模式下,不同的进程之间需要进行通信,可以利用消息队列来实现进程间通信。

Python中可以使用Queue模块来实现消息队列。下面是一个简单的示例:

import multiprocessing
def producer(queue):
    for i in range(10):
        queue.put(i)
def consumer(queue):
    while not queue.empty():
        print(queue.get())
if __name__ == '__main__':
    queue = multiprocessing.Queue()
    p1 = multiprocessing.Process(target=producer, args=(queue,))
    p2 = multiprocessing.Process(target=consumer, args=(queue,))
    p1.start()
    p2.start()
    p1.join()
    p2.join()

在上面的示例中,我们定义了一个producer函数和一个consumer函数,producer函数将0~9的数字放入消息队列,consumer函数从消息队列中取出数字并打印出来。

然后我们使用multiprocessing模块的Queue类创建了一个消息队列,并使用Process类创建了两个进程分别执行producer函数和consumer函数。

4.共享内存

对于需要多个进程共享的数据,可以使用共享内存来避免数据拷贝和进程间通信的开销。

在Python中,可以使用multiprocessing模块的Value和Array类来实现共享内存。

下面是一个简单的示例:

import multiprocessing
def worker(counter):
    counter.value += 1
if __name__ == '__main__':
    counter = multiprocessing.Value('i', 0)
    processes = []
    for i in range(5):
        p = multiprocessing.Process(target=worker, args=(counter,))
        processes.append(p)
        p.start()
    for p in processes:
        p.join()
    print(counter.value)

在上面的示例中,我们定义了一个worker函数,该函数接受一个参数counter,每次执行时将counter的值加1。

然后我们使用multiprocessing模块的Value类创建了一个整型变量counter,并使用Process类创建了5个进程分别执行worker函数。

最后,我们打印出counter的值。

5.异步IO

对于I/O密集型任务,可以使用异步IO来提高效率。在Python中,可以使用asyncio模块来实现异步IO。

下面是一个简单的示例:

import asyncio
async def worker():
    await asyncio.sleep(1)
    print("Worker process started")
loop = asyncio.get_event_loop()
loop.run_until_complete(worker())

在上面的示例中,我们定义了一个worker函数,该函数使用asyncio库的异步IO特性。

在函数体中,使用asyncio.sleep函数模拟了一个长时间的I/O操作,并在操作完成后打印了一条消息。

然后我们使用asyncio库的get_event_loop函数创建了一个事件循环,并使用run_until_complete函数启动worker函数。在程序执行过程中,事件循环会负责调度和执行异步IO操作。


总结

在Python中,使用多进程模式可以实现多核CPU的并行计算,从而提高程序的执行效率。

在本文中,我们介绍了如何使用Python的multiprocessing模块实现多进程并发执行任务、进程池、消息队列、共享内存、异步IO等方式来提高程序执行效率。

实际应用中,需要根据具体的场景选择合适的并行计算方式,并注意避免死锁等常见问题。


关于Python技术储备

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

👉CSDN大礼包:《Python入门资料&实战源码&安装工具】免费领取安全链接,放心点击

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

二、Python基础学习视频

② 路线对应学习视频

还有很多适合0基础入门的学习视频,有了这些视频,轻轻松松上手Python~在这里插入图片描述
在这里插入图片描述

③练习题

每节视频课后,都有对应的练习题哦,可以检验学习成果哈哈!
在这里插入图片描述
因篇幅有限,仅展示部分资料

三、精品Python学习书籍

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述

四、Python工具包+项目源码合集
①Python工具包

学习Python常用的开发软件都在这里了!每个都有详细的安装教程,保证你可以安装成功哦!
在这里插入图片描述

②Python实战案例

光学理论是没用的,要学会跟着一起敲代码,动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。100+实战案例源码等你来拿!
在这里插入图片描述

③Python小游戏源码

如果觉得上面的实战案例有点枯燥,可以试试自己用Python编写小游戏,让你的学习过程中增添一点趣味!
在这里插入图片描述

五、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
在这里插入图片描述
在这里插入图片描述

六、Python兼职渠道

而且学会Python以后,还可以在各大兼职平台接单赚钱,各种兼职渠道+兼职注意事项+如何和客户沟通,我都整理成文档了。
在这里插入图片描述
在这里插入图片描述
这份完整版的Python全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1204227.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

堆排序(大根堆、小根堆)

参考视频: 1、数据结构,小根堆的调整!必须熟练掌握! 2、数据结构建堆筛选输出最小值 | 计算机软件考研期末知识点2

Redis应用之一自增编号

一、前言 前段时间同事用Redis实现收银台商品排行榜,我们都知道Redis最基础的功能是用来缓存数据,但其实它还有很多特性能解决很多实际问题,接下来几篇文章我们就聊聊Reids一些特性的应用,今天先聊一下借助Reids生成不会重复的订…

leetCode 92.反转链表 II + 图解

92. 反转链表 II - 力扣&#xff08;LeetCode&#xff09; 给你单链表的头指针 head 和两个整数 left 和 right &#xff0c;其中 left < right 。请你反转从位置 left 到位置 right 的链表节点&#xff0c;返回 反转后的链表 206. 反转链表 - 力扣&#xff08;LeetCode&am…

◢Django 自写分页与使用

目录 1、设置分页样式,并展示到浏览器 2、模拟页码 3、生成分页 4、数据显示 5、上一页下一页 6、数据库的数据分页 7、封装分页 8、使用封装好的分页 建立好app后&#xff0c;设置路径path(in2/,views.in2)&#xff0c;视图def in2(request): &#xff0c;HTML: in2.html…

web自动化框架之四测试报告的搭建

现状&#xff1a; 看过前面的文章&#xff0c;楼主用的是python&#xff0c;所以在搭建测试报告这块的时候使用的是unittesthtmlTestRunner&#xff1b;然后发现生成出来的报告&#xff0c;总是有那么不完美的地方&#xff0c;比如想增加图片&#xff0c;比如显示风格改变下&a…

GPU Microarch 学习笔记【2】Unified Memory

目录 1. M3 Dynamic Caching 2. Unified Memory 3. Unified Memory是如何处理page fault的 4. Unified Memory Page Fault的相关论文 M3 Dynamic Caching 最新的Apple M3 芯片最亮眼的可能是支持dynamic caching&#xff0c;如下图所示。 具体说来就是传统的GPU分配内存时&…

北邮22级信通院数电:Verilog-FPGA(9)第九周实验(1)实现带同步复位功能、采用上升沿触发的D触发器

北邮22信通一枚~ 跟随课程进度更新北邮信通院数字系统设计的笔记、代码和文章 持续关注作者 迎接数电实验学习~ 获取更多文章&#xff0c;请访问专栏&#xff1a; 北邮22级信通院数电实验_青山如墨雨如画的博客-CSDN博客 目录 一.顶层模块的书写 二.两种验证方法 2.1使用…

美国BGP服务器有哪些优势?

​  在当今数字化时代&#xff0c;网络连接的性能和可靠性对于企业和个人来说至关重要。而美国作为全球互联网的中心之一&#xff0c;其地区BGP服务器拥有许多优势。  网络性能和可靠性&#xff1a;美国BGP专线服务器采用BGP协议&#xff0c;一种高级动态路由协议&#xff…

线性表->栈

文章目录 前言概述栈的初始化销毁压栈出栈判断栈为不为空栈的有效个数 前言 栈相对于链表&#xff0c;稍微简单一点&#xff0c;但是栈的难点在于通过栈去理解递归算法。 概述 **栈&#xff1a;**一种特殊的线性表&#xff0c;其只允许在固定的一端进行插入和删除元素操作。…

FreeRTOS知识梳理

一、RTOS:Real time operating system,中文意思为 实时操作系统&#xff0c;它是一类操作系统&#xff0c;比如uc/OS、FreeRTOS、RTX、RT-Thread 这些都是实时操作系统。 二、移植FreeRTOS到STM32F103C8T6上 interface选择CMSIS_V1,RCC选择Crystal Ceramic Resonator 。 …

【2012年数据结构真题】

41题 &#xff08;1&#xff09; 最坏情况下比较的总次数 对于长度分别为 m&#xff0c;n 的两个有序表的合并过程&#xff0c;最坏情况下需要一直比较到两个表的表尾元素&#xff0c;比较次数为 mn-1 次。已知需要 5 次两两合并&#xff0c;故设总比较次数为 X-5, X 就是以 N…

Django(四、路由层)

文章目录 一、路由层1.路由匹配url方法第一个是参数 的正则表达式 二、正则无名分组与有名分组无名分组有名分组 三、反向解析1.概念无名分组动态路由解析有名分组动态路由解析 四、路由分发为什么要用路由分发&#xff1f; 1.总路由分发配置名称空间 五、伪静态的概念六、虚拟…

【STM32 CAN】STM32G47x 单片机FDCAN作为普通CAN外设使用教程

STM32G47x 单片机FDCAN作为普通CAN外设使用教程 控制器局域网总线&#xff08;CAN&#xff0c;Controller Area Network&#xff09;是一种用于实时应用的串行通讯协议总线&#xff0c;它可以使用双绞线来传输信号&#xff0c;是世界上应用最广泛的现场总线之一。CAN协议用于汽…

基于SSM+Vue的网上购物商城

基于SSMVue的网上购物商城的设计与实现~ 开发语言&#xff1a;Java数据库&#xff1a;MySQL技术&#xff1a;SpringMyBatisSpringMVC工具&#xff1a;IDEA/Ecilpse、Navicat、Maven 系统展示 主页 商品详情 登录界面 管理员界面 用户界面 可视化图标 摘要 基于SSM&#xff0…

vcomp120.dll丢失怎么办?vcomp120.dll丢失的解决方法分享

vcomp120.dll丢失”。这个错误通常会导致某些应用程序无法正常运行&#xff0c;给用户带来困扰。那么&#xff0c;当我们遇到这个问题时&#xff0c;应该如何修复呢&#xff1f;下面我将为大家介绍四个修复vcomp120.dll丢失的方法。 一、使用dll修复程序修复 可以通过百度或许…

Knife4j在springboot3中如何集成呢(如果大家阅读能力好的话,建议直接看作者写的博客。当然,在下面也会附上作者的博客)

一.为什么会写这篇博客呢&#xff1f; 因为本作者在使用springboot2的时候还好好的&#xff0c;将springbooot2升到springboot3的时候&#xff0c;发现我天&#xff0c;knife4j好像出问题了&#xff0c;找了好久才发现时knife4j的版本问题。 二.说一下knife4j的版本问题吧&…

力扣刷题-二叉树-二叉树的层序遍历(相关题目总结)

思路 层序遍历一个二叉树。就是从左到右一层一层的去遍历二叉树。这种遍历的方式和我们之前讲过的都不太一样。 需要借用一个辅助数据结构即队列来实现&#xff0c;队列先进先出&#xff0c;符合一层一层遍历的逻辑&#xff0c;而用栈先进后出适合模拟深度优先遍历也就是递归的…

力扣刷题-二叉树-翻转二叉树

226.翻转二叉树 翻转一棵二叉树。 思路 参考&#xff1a; https://www.programmercarl.com/0226.%E7%BF%BB%E8%BD%AC%E4%BA%8C%E5%8F%89%E6%A0%91.html#%E6%80%9D%E8%B7%AF 如果要从整个树来看&#xff0c;翻转还真的挺复杂&#xff0c;整个树以中间分割线进行翻转&#xf…

【CUDA编程--编程模型简介算子开发流程】

官方文档&#xff1a;https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html 什么是CUDA CUDA全称&#xff08;Compute Unified Device Architecture&#xff09;统一计算架构&#xff0c;是NVIDIA推出的并行计算平台深度学习加速&#xff1a;对于神经网络&…

超级干货:光纤知识总结最全的文章

你们好&#xff0c;我的网工朋友。 光纤已经是远距离有线信号传输的主要手段&#xff0c;而安装、维护光纤也是很多人网络布线的基本功。 在网络布线中&#xff0c;通常室外楼宇间幢与幢之间使用的是光缆&#xff0c;室内楼宇内部大都使用的是以太网双绞线&#xff0c;也有使用…