深度学习 机器视觉 人脸识别系统 - opencv python 计算机竞赛

news2024/11/20 20:17:49

文章目录

  • 0 前言
  • 1 机器学习-人脸识别过程
    • 人脸检测
    • 人脸对其
    • 人脸特征向量化
    • 人脸识别
  • 2 深度学习-人脸识别过程
    • 人脸检测
    • 人脸识别
        • Metric Larning
  • 3 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习 机器视觉 人脸识别系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 机器学习-人脸识别过程

基于传统图像处理和机器学习技术的人脸识别技术,其中的流程都是一样的。

机器学习-人脸识别系统都包括:

  • 人脸检测
  • 人脸对其
  • 人脸特征向量化
  • 人脸识别
    在这里插入图片描述

人脸检测

人脸检测用于确定人脸在图像中的大小和位置,即解决“人脸在哪里”的问题,把真正的人脸区域从图像中裁剪出来,便于后续的人脸特征分析和识别。下图是对一张图像的人脸检测结果:

在这里插入图片描述

人脸对其

同一个人在不同的图像序列中可能呈现出不同的姿态和表情,这种情况是不利于人脸识别的。

所以有必要将人脸图像都变换到一个统一的角度和姿态,这就是人脸对齐。

它的原理是找到人脸的若干个关键点(基准点,如眼角,鼻尖,嘴角等),然后利用这些对应的关键点通过相似变换(Similarity
Transform,旋转、缩放和平移)将人脸尽可能变换到标准人脸。

下图是一个典型的人脸图像对齐过程:
在这里插入图片描述
这幅图就更加直观了:
在这里插入图片描述

人脸特征向量化

这一步是将对齐后的人脸图像,组成一个特征向量,该特征向量用于描述这张人脸。

但由于,一幅人脸照片往往由比较多的像素构成,如果以每个像素作为1维特征,将得到一个维数非常高的特征向量, 计算将十分困难;而且这些像素之间通常具有相关性。

所以我们常常利用PCA技术对人脸描述向量进行降维处理,保留数据集中对方差贡献最大的人脸特征来达到简化数据集的目的

PCA人脸特征向量降维示例代码:

#coding:utf-8
from numpy import *
from numpy import linalg as la
import cv2
import os
 
def loadImageSet(add):
    FaceMat = mat(zeros((15,98*116)))
    j =0
    for i in os.listdir(add):
        if i.split('.')[1] == 'normal':
            try:
                img = cv2.imread(add+i,0)
            except:
                print 'load %s failed'%i
            FaceMat[j,:] = mat(img).flatten()
            j += 1
    return FaceMat
 
def ReconginitionVector(selecthr = 0.8):
    # step1: load the face image data ,get the matrix consists of all image
    FaceMat = loadImageSet('D:\python/face recongnition\YALE\YALE\unpadded/').T
    # step2: average the FaceMat
    avgImg = mean(FaceMat,1)
    # step3: calculate the difference of avgimg and all image data(FaceMat)
    diffTrain = FaceMat-avgImg
    #step4: calculate eigenvector of covariance matrix (because covariance matrix will cause memory error)
    eigvals,eigVects = linalg.eig(mat(diffTrain.T*diffTrain))
    eigSortIndex = argsort(-eigvals)
    for i in xrange(shape(FaceMat)[1]):
        if (eigvals[eigSortIndex[:i]]/eigvals.sum()).sum() >= selecthr:
            eigSortIndex = eigSortIndex[:i]
            break
    covVects = diffTrain * eigVects[:,eigSortIndex] # covVects is the eigenvector of covariance matrix
    # avgImg 是均值图像,covVects是协方差矩阵的特征向量,diffTrain是偏差矩阵
    return avgImg,covVects,diffTrain
 
def judgeFace(judgeImg,FaceVector,avgImg,diffTrain):
    diff = judgeImg.T - avgImg
    weiVec = FaceVector.T* diff
    res = 0
    resVal = inf
    for i in range(15):
        TrainVec = FaceVector.T*diffTrain[:,i]
        if  (array(weiVec-TrainVec)**2).sum() < resVal:
            res =  i
            resVal = (array(weiVec-TrainVec)**2).sum()
    return res+1
 
if __name__ == '__main__':
 
    avgImg,FaceVector,diffTrain = ReconginitionVector(selecthr = 0.9)
    nameList = ['01','02','03','04','05','06','07','08','09','10','11','12','13','14','15']
    characteristic = ['centerlight','glasses','happy','leftlight','noglasses','rightlight','sad','sleepy','surprised','wink']
 
    for c in characteristic:
 
        count = 0
        for i in range(len(nameList)):
 
            # 这里的loadname就是我们要识别的未知人脸图,我们通过15张未知人脸找出的对应训练人脸进行对比来求出正确率
            loadname = 'D:\python/face recongnition\YALE\YALE\unpadded\subject'+nameList[i]+'.'+c+'.pgm'
            judgeImg = cv2.imread(loadname,0)
            if judgeFace(mat(judgeImg).flatten(),FaceVector,avgImg,diffTrain) == int(nameList[i]):
                count += 1
        print 'accuracy of %s is %f'%(c, float(count)/len(nameList))  # 求出正确率

人脸识别

这一步的人脸识别,其实是对上一步人脸向量进行分类,使用各种分类算法。

比如:贝叶斯分类器,决策树,SVM等机器学习方法。

从而达到识别人脸的目的。

这里分享一个svm训练的人脸识别模型:



    from __future__ import print_function
    
    from time import time
    import logging
    import matplotlib.pyplot as plt
    
    from sklearn.cross_validation import train_test_split
    from sklearn.datasets import fetch_lfw_people
    from sklearn.grid_search import GridSearchCV
    from sklearn.metrics import classification_report
    from sklearn.metrics import confusion_matrix
    from sklearn.decomposition import RandomizedPCA
    from sklearn.svm import SVC


    print(__doc__)
    
    # Display progress logs on stdout
    logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')


    ###############################################################################
    # Download the data, if not already on disk and load it as numpy arrays
    
    lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)
    
    # introspect the images arrays to find the shapes (for plotting)
    n_samples, h, w = lfw_people.images.shape
    
    # for machine learning we use the 2 data directly (as relative pixel
    # positions info is ignored by this model)
    X = lfw_people.data
    n_features = X.shape[1]
    
    # the label to predict is the id of the person
    y = lfw_people.target
    target_names = lfw_people.target_names
    n_classes = target_names.shape[0]
    
    print("Total dataset size:")
    print("n_samples: %d" % n_samples)
    print("n_features: %d" % n_features)
    print("n_classes: %d" % n_classes)


    ###############################################################################
    # Split into a training set and a test set using a stratified k fold
    
    # split into a training and testing set
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=0.25, random_state=42)


    ###############################################################################
    # Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled
    # dataset): unsupervised feature extraction / dimensionality reduction
    n_components = 80
    
    print("Extracting the top %d eigenfaces from %d faces"
          % (n_components, X_train.shape[0]))
    t0 = time()
    pca = RandomizedPCA(n_components=n_components, whiten=True).fit(X_train)
    print("done in %0.3fs" % (time() - t0))
    
    eigenfaces = pca.components_.reshape((n_components, h, w))
    
    print("Projecting the input data on the eigenfaces orthonormal basis")
    t0 = time()
    X_train_pca = pca.transform(X_train)
    X_test_pca = pca.transform(X_test)
    print("done in %0.3fs" % (time() - t0))

    ###############################################################################
    # Train a SVM classification model
    
    print("Fitting the classifier to the training set")
    t0 = time()
    param_grid = {'C': [1,10, 100, 500, 1e3, 5e3, 1e4, 5e4, 1e5],
                  'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], }
    clf = GridSearchCV(SVC(kernel='rbf', class_weight='balanced'), param_grid)
    clf = clf.fit(X_train_pca, y_train)
    print("done in %0.3fs" % (time() - t0))
    print("Best estimator found by grid search:")
    print(clf.best_estimator_)
    
    print(clf.best_estimator_.n_support_)
    ###############################################################################
    # Quantitative evaluation of the model quality on the test set
    
    print("Predicting people's names on the test set")
    t0 = time()
    y_pred = clf.predict(X_test_pca)
    print("done in %0.3fs" % (time() - t0))
    
    print(classification_report(y_test, y_pred, target_names=target_names))
    print(confusion_matrix(y_test, y_pred, labels=range(n_classes)))


    ###############################################################################
    # Qualitative evaluation of the predictions using matplotlib
    
    def plot_gallery(images, titles, h, w, n_row=3, n_col=4):
        """Helper function to plot a gallery of portraits"""
        plt.figure(figsize=(1.8 * n_col, 2.4 * n_row))
        plt.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35)
        for i in range(n_row * n_col):
            plt.subplot(n_row, n_col, i + 1)
            # Show the feature face
            plt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray)
            plt.title(titles[i], size=12)
            plt.xticks(())
            plt.yticks(())

    # plot the result of the prediction on a portion of the test set
    
    def title(y_pred, y_test, target_names, i):
        pred_name = target_names[y_pred[i]].rsplit(' ', 1)[-1]
        true_name = target_names[y_test[i]].rsplit(' ', 1)[-1]
        return 'predicted: %s\ntrue:      %s' % (pred_name, true_name)
    
    prediction_titles = [title(y_pred, y_test, target_names, i)
                         for i in range(y_pred.shape[0])]
    
    plot_gallery(X_test, prediction_titles, h, w)
    
    # plot the gallery of the most significative eigenfaces
    
    eigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])]
    plot_gallery(eigenfaces, eigenface_titles, h, w)
    
    plt.show()



在这里插入图片描述

2 深度学习-人脸识别过程

不同于机器学习模型的人脸识别,深度学习将人脸特征向量化,以及人脸向量分类结合到了一起,通过神经网络算法一步到位。

深度学习-人脸识别系统都包括:

  • 人脸检测
  • 人脸对其
  • 人脸识别

人脸检测

深度学习在图像分类中的巨大成功后很快被用于人脸检测的问题,起初解决该问题的思路大多是基于CNN网络的尺度不变性,对图片进行不同尺度的缩放,然后进行推理并直接对类别和位置信息进行预测。另外,由于对feature
map中的每一个点直接进行位置回归,得到的人脸框精度比较低,因此有人提出了基于多阶段分类器由粗到细的检测策略检测人脸,例如主要方法有Cascade CNN、
DenseBox和MTCNN等等。

MTCNN是一个多任务的方法,第一次将人脸区域检测和人脸关键点检测放在了一起,与Cascade
CNN一样也是基于cascade的框架,但是整体思路更加的巧妙合理,MTCNN总体来说分为三个部分:PNet、RNet和ONet,网络结构如下图所示。

在这里插入图片描述

人脸识别

人脸识别问题本质是一个分类问题,即每一个人作为一类进行分类检测,但实际应用过程中会出现很多问题。第一,人脸类别很多,如果要识别一个城镇的所有人,那么分类类别就将近十万以上的类别,另外每一个人之间可获得的标注样本很少,会出现很多长尾数据。根据上述问题,要对传统的CNN分类网络进行修改。

我们知道深度卷积网络虽然作为一种黑盒模型,但是能够通过数据训练的方式去表征图片或者物体的特征。因此人脸识别算法可以通过卷积网络提取出大量的人脸特征向量,然后根据相似度判断与底库比较完成人脸的识别过程,因此算法网络能不能对不同的人脸生成不同的特征,对同一人脸生成相似的特征,将是这类embedding任务的重点,也就是怎么样能够最大化类间距离以及最小化类内距离。

Metric Larning

深度学习中最先应用metric
learning思想之一的便是DeepID2了。其中DeepID2最主要的改进是同一个网络同时训练verification和classification(有两个监督信号)。其中在verification
loss的特征层中引入了contrastive loss。

Contrastive
loss不仅考虑了相同类别的距离最小化,也同时考虑了不同类别的距离最大化,通过充分运用训练样本的label信息提升人脸识别的准确性。因此,该loss函数本质上使得同一个人的照片在特征空间距离足够近,不同人在特征空间里相距足够远直到超过某个阈值。(听起来和triplet
loss有点像)。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

3 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1203882.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

1003:两个整数的四则运算

题目描述&#xff1a;输入两个整数num1和num2&#xff0c;请你设计一个程序&#xff0c;计算并输出它们的和、差、积、整数商及余数。 输入&#xff1a;输入只有两个正整数num1、num2。 输出&#xff1a;输出占一行&#xff0c;包括两个数的和、差、积、商及余数&#xff0c;数…

为什么打开idea时,没有启动页面,如何解决?

更新idea2021.2后&#xff0c;当双击idea打开时&#xff0c;发现没有启动界面&#xff0c;直接进入IDEA界面&#xff0c;中间等待时间&#xff0c;让人误以为没有打开idea成功&#xff0c;使得多次点击idea图标。 解决方案就是 在idea界面菜单栏中找到帮助&#xff08;Help)&a…

在Spring Boot中使用进程内缓存和Cache注解

在Spring Boot中使用内缓存的时候需要预先知道什么是内缓存&#xff0c;使用内缓存的好处。 什么是内缓存 内缓存&#xff08;也称为进程内缓存或本地缓存&#xff09;是指将数据存储在应用程序的内存中&#xff0c;以便在需要时快速访问和检索数据&#xff0c;而无需每次都从…

「NLP+网安」相关顶级会议期刊 投稿注意事项+会议等级+DDL+提交格式

「NLP网安」相关顶级会议&期刊投稿注意事项 写在最前面一、会议ACL (The Annual Meeting of the Association for Computational Linguistics)IH&MMSec (The ACM Workshop on Information Hiding, Multimedia and Security)CCS (The ACM Conference on Computer and Co…

腾讯云新客户服务器88元/年,540元/3年,另有5年新用户服务器

在选择云服务器时&#xff0c;首先需要考虑的是性能与配置是否与自己的需求相匹配。对于小型网站或者个人博客&#xff0c;轻量应用服务器是一个不错的选择。腾讯云双十一活动中&#xff0c;2核2G轻量应用服务器的活动优惠价为88元/年&#xff0c;2核4G轻量应用服务器的活动优惠…

接口自动化测试流程、工具及其实践!

01、接口自动化测试简介 接口自动化测试是指通过编写脚本或使用自动化工具&#xff0c;对软件系统的接口进行测试的过程。接口测试是软件测试中的一种重要测试类型&#xff0c;主要用于验证系统组件之间的通信和数据交换是否正常。通过接口自动化测试可以快速发现接口中的问题…

【Linux】第十六站:进程地址空间

文章目录 一、程序地址空间1.内存的分布2.static修饰后为什么不会被释放3.一个奇怪的现象 二、进程地址空间1.前面现象的原因2.地址空间究竟是什么&#xff1f;3.为什么要有进程地址空间4.页表5.什么叫进程&#xff1f;6.进程具有独立性。为什么&#xff1f;怎么做到呢&#xf…

thinkPHP controller_suffix 使用方法

在‘config/route.php’配置’controller_suffix’ > true 后&#xff0c; 在controller里面所有的类都要添加Controller为后缀的名字。 在网页使用的时候不用输入Controller的后缀 访问方法,他默认自己带上controller后缀 这样做其实就为了规范controller类

[HCTF 2018]admin 1(四种解法!)

题目环境&#xff1a; 有登录和注册两个按钮 先注册一个admin用户 注册admin用户 显示admin用户已经被注册了 好&#xff0c;这就简单了&#xff0c;admin用户存在&#xff0c;但是不清楚admin用户的密码 尝试以下弱口令 第一种解法&#xff1a;密码爆破-尝试弱口令 进去login登…

[量子计算与量子信息] 2.1 线性代数

2.1 线性代数 符号对照表 量子力学中&#xff0c;向量使用 ∣ ψ ⟩ \ket \psi ∣ψ⟩ (ket)来表示&#xff0c;可以理解为一个列向量。其对偶向量为 ⟨ ψ ∣ \bra \psi ⟨ψ∣ &#xff0c;可以理解为行向量。 向量空间中零向量直接用 0 0 0 表示&#xff0c; ∣ 0 ⟩ \…

这个校园外卖平台凭什么做到单日盈利过2万的?

高校在无形之间已经跻身千亿市场&#xff0c;校园市场的消费潜力无需赘述&#xff0c;单看开学季高校的快递单量就能领略一二&#xff0c;校园创业成为了很多人的选择。 同样投身校园市场创业的杨先生&#xff0c;用自己的亲身经历&#xff0c;从时机到营销再到服务展开来告诉…

语音识别芯片在产品应用上的难点列举

语音识别技术&#xff0c;作为人工智能领域中的一颗璀璨明珠&#xff0c;已经广泛应用于用户交互、智能家居、语音助手等多个领域。它为我们的生活带来了诸多便利&#xff0c;使得我们可以更加高效地与电子设备进行互动。然而&#xff0c;语音识别技术的实现&#xff0c;依赖于…

C语言文件操作 | 文件分类、文件打开与关闭、文件的读写、文件状态、文件删除与重命名、文件缓冲区

欢迎关注博主 Mindtechnist 或加入【Linux C/C/Python社区】一起学习和分享Linux、C、C、Python、Matlab&#xff0c;机器人运动控制、多机器人协作&#xff0c;智能优化算法&#xff0c;滤波估计、多传感器信息融合&#xff0c;机器学习&#xff0c;人工智能等相关领域的知识和…

Python实现WOA智能鲸鱼优化算法优化BP神经网络回归模型(BP神经网络回归算法)项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档视频讲解&#xff09;&#xff0c;如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 鲸鱼优化算法 (whale optimization algorithm,WOA)是 2016 年由澳大利亚格里菲斯大学的Mirjalili 等提…

js编辑只取修改后的对象的属性和值

需求&#xff1a;在el-table的列表编辑操作后&#xff0c; 第一步&#xff1a;获取当前行数据&#xff0c;为对象&#xff1a;{}&#xff0c; 第二步&#xff1a;数据回填 第三步&#xff1a;编辑 第四步&#xff1a;请求后端接口 本文章操作就是在编辑完成后&#xff0c;只取编…

字典管理怎么使用,vue3项目使用若依的的字典管理模块

若依框架数据字典的使用_若依数据字典_哈哈水水水水的博客-CSDN博客 【精选】关于数据字典的理解与设计_数据字典怎么设计-CSDN博客 若依的字典值如何使用&#xff08;超详细图文教程&#xff09;_若依字典管理_丿BAIKAL巛的博客-CSDN博客 Vue3组合式API&#xff1a;getCurr…

Python实现WOA智能鲸鱼优化算法优化卷积神经网络分类模型(CNN分类算法)项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档视频讲解&#xff09;&#xff0c;如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 鲸鱼优化算法 (whale optimization algorithm,WOA)是 2016 年由澳大利亚格里菲斯大学的Mirjalili 等提…

使用vitis调试时debug按钮灰化无法进行操作

问题 使用vitis调试时debug按钮灰化无法进行操作。 原因 bitstream文件配置有误。 解决办法 重新配置正确的bitstream文件&#xff0c;如下&#xff1a;

正交试验DOE

它原本是日本学者为了质量管理而设计的试验。后来被用在算法的参数设计上&#xff0c;可以利用部分的试验确定出最合理的参数组合。 举个例子&#xff0c;比如遗传算法中的种群数pop&#xff0c;交叉概率pr&#xff0c;变异概率pm&#xff0c;以及迭代次数N&#xff0c;每个参…

设置VS编译选项使程序不需要带DLL在任意Windows系统上正常运行

针对VS上编译控制台程序和DLL程序的编译设置 之所以把控制台和DLL程序的编译设置放在一起&#xff0c;是因为它们的设置都已一样的。现在&#xff0c;我们以VS2013开发环境为例&#xff0c;想大家描述一下操作步骤。 在打开项目工程之后&#xff0c;右击项目工程&#xff0c;选…